
 8 · Limits of Correctness (VC.08)

 521

 The Limits of Correctness

 Abstract†

used, in its own terms, to “prove programs correct.” From its
name, someone might easily conclude that a program that had
been proven correct would never make any mistakes, or that it
would always follow its designers intentions. In fact, however,
what are called proofs of correctness are really proofs of the rela-

program, one of the model in terms of which the program is
formulated. Part of assessing the correctness of a computer
system, however, involves assessing the appropriateness of this
model. Whereas standard semantical techniques are relevant
to the program-model relationship, we do not currently have
any theories of the further relationship between the model
and the world in which the program is embedded.

In this paper I sketch the role of models in computer sys-
tems, comment on various properties of the model-world rela-

the term ‘correctness’ should be changed to ‘consistency.’ In ad-
dition I argue that, since models cannot in general capture all

-
ness is inherently unattainable, for people or for computers.

† Techni-
cal Report ; not in the newsletter version «check out
others».

Version (June ,)

Copyright © 1985 Brian Cantwell Smith. Originally presented at a Symposium on Uninten-
tional Nuclear War at the Fifth Congress of the International Physicians for the Prevention Nuclear
War, Budapest, Hungary, June 28–July 1, 1985. The version delivered there was subse-
quently reprinted: (i) as Center for the Study of Language and Information Report
CSLI–85–36, Stanford, California: Stanford University, Oct. 1985, 22 pp.; (ii) in D.
Johnson & H. Nissenbaum (eds.), Computers, Ethics & Social Values, Englewood Cli�s, NJ:
Prentice Hall, 456–69; (iii) in Colburn, T. R., Fetzer, J. H., & Rankin T. L. (eds.), Program
Verification, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993, pp. 275–93;
and (iv) in Kling, R. (ed.), Computerization and Controversy: Value Conflicts and Social Choices
(2nd Ed.), San Diego: Academic Press, pp. 810–25. Annotations added in 2014.

522 Indiscrete Affairs · I

 1 Introduction
On October 5, 1960, the American Ballistic Missile Early
Warning System station at Thule, Greenland, indicated a
large contingent of Soviet missiles headed towards the United
States.1 Fortunately, common sense prevailed at the informal
threat-assessment conference that was immediately convened:
international tensions were not particularly high at the time,
the system had only recently been installed, Khrushchev† was
in New York, and all in all a massive Soviet attack seemed very
unlikely. And so no devastating counterattack was launched.
What was the problem? The moon had risen, and was reflect-
ing radar signals back to earth. Needless to say, this lunar re-
flection had not been predicted by the system’s designers.

Over the last ten years,‡ the United States Defense Depart-
ment has spent many millions of dollars on a computer tech-
nology called “program verification”—a branch of computer
science whose business, in its own terms, is to “prove programs
correct.” Program verification has been studied in theoretical
computer science departments since a few seminal papers in
the 1960s,2 but it has only recently started to gain in public
visibility, and to be applied to real world problems. General
Electric, to consider just one example, has initiated verification

1. Edmund Berkeley, The Computer Revolution, Doubleday, 1962, pp.
175–77, citing newspaper stories in the Manchester Guardian Weekly
of Dec. 1, 1960, a upi dispatch published in the Boston Traveler of Dec.
13, 1960, and an ap dispatch published in the New York Times on Dec
23, 1960.
†Nikita Khrushchev, Premier of the Soviet Union from 1958–64.
‡I.e., in the 1970s and early 1980s (the paper was presented in 1985).
2. McCarthy, John, “A Basis for a Mathematical Theory of Computa-
tion,” 1963, in P. Braffort and D. Hirschberg, eds., Computer Program-
ming and Formal Systems, Amsterdam: North-Holland, 1967, pp.
33–70. Floyd, Robert, “Assigning Meaning to Programs,” Proceedings
of Symposia in Applied Mathematics 19, 1967 (also in F. T. Schwartz,
ed., Mathematical Aspects of Computer Science, Providence: American
Mathematical Society, 1967). Naur, P., “Proof of Algorithms by General
Snapshots,” bit Vol. 6 No. 4, pp. 310–16, 1966.

 8 · Limits of Correctness (VC.08)

 523

projects in their own laboratories; they would like to prove
that the programs used in their latest computer-controlled
washing machines will not have any “bugs” (even a single seri-
ous one in a major product can destroy their profit margin).3

Although it used to be that only the simplest programs could
be “proven correct”—programs to put simple lists into order,
to compute simple arithmetic functions, etc.—slow but steady
progress has been made in extending the range of verification
techniques. Recent papers have reported correctness proofs
for somewhat more complex programs, including small oper-
ating systems, compilers, and other materiel of modern system
design.4

What, we do well to ask, does this new technology mean?
How good are we at it? For example, if the 1960 warning sys-
tem had been proven correct (which it was not), could we
have avoided the problem with the moon? If it were possible
to prove that programs being written to control automatic
launch-on-warning systems were correct, would that mean
there could not be a catastrophic accident? In systems now
being proposed computers will make launching decisions in a
matter of seconds, with no time for any human intervention
(let alone for musings about Khrushchev’s being in New York).
Do the techniques of program verification hold enough prom-
ise so that, if these new systems could all be proven correct, we
could all sleep more easily at night?

These are the questions I want to look at today. And my
answer, to give away the punch-line, is no. For fundamental
reasons—reasons that anyone can understand—there are in-
herent limitations to what can be proven about computers and
computer programs. Although program verification is an im-
portant new technology, useful, like so many other things, in

3. Albert Stevens, Raytheon BBN Technologies, Inc. [called “Bolt, Be-
ranek and Newman” at the time], personal communication.
4. See for example R. S. Boyer and Moore, J S., eds., The Correctness
Problem in Computer Science, London: Academic Press, 1981.

a1

524 Indiscrete Affairs · I

its particular time and place, it should definitely not be called
verification. Just because a program is “proven correct,” in other
words, you cannot be sure that it will do what you intend.

First some background.

 2 General Issues in Program Verification
Computation is by now the most important enabling technol-
ogy of nuclear weapons systems: it underlies virtually every
aspect of the defense system, from the early warning systems,
battle management and simulation systems, and systems for
communication and control, to the intricate guidance systems
that direct the missiles to their targets. It is difficult, in as-
sessing the chances of an accidental nuclear war, to imagine a
more important question to ask than whether these pervasive
computer systems will or do work correctly.

Because the subject is so large, however, I want to focus on
just one aspect of computers relevant to their correctness: the
use of models in the construction, use, and analysis of comput-
er systems. I have chosen to look at modeling because I think
it exerts the most profound and, in the end, most important
influence on the systems we build. But it is only one of an
enormous number of important questions. First, therefore—
in order to unsettle you a little—let me just hint at some of
the equally important issues I will not address:

1. Complexity: At the current state of the art, only very
simple programs can be proven correct. Although it is
terribly misleading to assume that either the complex-
ity or power of a computer program is a linear function
of length, some rough numbers are illustrative. The
simplest possible arithmetic programs are measured in
tens of lines; the current state of the verification art
extends only to programs of up to several hundred. It
is estimated that the systems proposed in the Strate-
gic Defense Initiative (Stars Wars), in contrast, will

 8 · Limits of Correctness (VC.08)

 525

require at least 10,000,000 [ten billion] lines of code.5
By analogy, compare the difference between resolving
a two-person dispute and settling the political prob-
lems of the Middle East. There is no a priori reason to
believe that strategies successful at one level will scale
to the other.

2. Human interaction: Not much can be “proven,” let
alone specified formally, about actual human behavior.
The sorts of programs that have so far been proven cor-
rect, therefore, do not include much substantial human
interaction. On the other hand, as the moonrise ex-
ample indicates, it is often crucial to allow enough hu-
man intervention to enable people to override system
mistakes. System designers, therefore, are faced with
a very real dilemma: should they rule out substantive
human intervention, in order to develop more confi-
dence in how their systems will perform; or should
they include it, so that costly errors can be avoided or
at least repaired? The Three Mile Island incident† is
a trenchant example of just how serious this tradeoff
can get: the system design provided for considerable
human intervention, but then the operators failed to
act “appropriately.” Which strategy leads to the more
important kind of correctness?

5. Fletcher, James C., study chairman, and McMillan, Brockway, panel
chairman, Report of the Study on Eliminating the Threat Posed by
Nuclear Ballistic Missiles (U), Vol. 5, Battle Management, Communica-
tions. and Data Processing (U), u. s. Department of Defense, February
1984.
†Five years before this paper was written, on March 28, 1979, a nucle-
ar power plant on Three Mile Island near Harrisburg, Pennsylvania,
suffered a partial nuclear meltdown, resulting in the release of small
amounts of radioactive iodine and radioactive gas into the environment.
The reactor was ultimately brought under control, but to this day the
accident remains the worst in the history of u.s. nuclear power industry.
Though technically referring to the island itself, the term “Three Mile
Island” still effectively serves as a proper name for the singular accident.

526 Indiscrete Affairs · I

A standard way out of this dilemma is to specify the
behavior of the system relative to the actions of its opera-
tors. But as we will see below, this strategy pressures
the designers to specify the system totally in terms of
internal actions, not external effects. So you end up
proving only that the system will behave in the way that
it will behave (i.e., it will raise this line level 3 volts), not
do what you want it to do (i.e., launch a missile only if
the attack is real). Unfortunately, the latter is clearly
what is important. Systems comprising computers and
people must function properly as integrated systems;
nothing is gained by showing that one cog in a mis-
shapen wheel is a very nice cog indeed.

Furthermore, large computer systems are dynamic,
constantly changing, embedded in complex social set-
tings. Another famous “mistake” in the American de-
fense system occurred when a human operator mistak-
enly mounted a training tape, containing a simulation
of a full-scale Soviet attack, onto a computer that, just
by chance, was automatically pulled into service when
the primary machine ran into a problem. For some
tense moments the simulation data were taken to be
the real thing.6 What does it mean to install a “correct”
module into a complex social flux?

3. Levels of Failure: Complex computer systems must
work at many different levels. It follows that they can
fail at many different levels too. By analogy, consider
the many different ways a hospital could fail. First,
the beams used to frame it might collapse. Or they
might perform flawlessly, but the operating room door

6. See, for example, the Hart-Goldwater report to the Committee on
Armed Services of the U.S. Senate: “Recent False Alerts from the Na-
tion’s Missile Attack Warning System” (Washington, d.c.: u.s. Govern-
ment Printing Office, Oct. 9, 1980); Physicians for Social Responsibility,
Newsletter, “Accidental Nuclear War,” (Winter 1982), p. 1.

 8 · Limits of Correctness (VC.08)

 527

might be too small to let in a hospital bed (in which
case you would blame the architects, not the lumber
or steel company). Or the operating room might be
fine, but the hospital might be located in the middle of
the woods, where no one could get to it (in which case
you would blame the planners). Or, to take a different
example, consider how a letter could fail. It might be
so torn or soiled that it could not be read. Or it might
look beautiful, but be full of spelling mistakes. Or it
might have perfect grammar, but disastrous contents.

Computer systems are the same: they can be “cor-
rect” at one level—say, in terms of hardware—but fail
at another (i.e., the systems built on top of the hard-
ware can do the wrong thing even if the chips are fine).
Sometimes, when people talk about computers failing,
they seem to think that only the hardware needs to
work. And hardware does from time to time fail, caus-
ing machines to come to a halt, or yielding errant be-
havior (as for example when a faulty chip in another
American early warning system sputtered random
digits into a signal interpreted as indicating how many
Soviet missiles had been sighted, again causing a false
alert7). And the connections between the computers
and the world can break; when the moonrise problem
was first recognized, an attempt to override it failed
because an iceberg had accidentally cut an undersea
telephone cable.8

But the more important point is that, in order to be
reliable, a system must be correct, or anyway reliable,
at every relevant level; the hardware is just the starting
place (and by far the easiest, at that). Unfortunately,
however, we do not even know what all the relevant

7. Ibid.
8. Berkeley, op. cit. See also Daniel Ford’s two-part article “The Button,”
New Yorker, April 1, 1985, p. 43, and April 8, 1985, p. 49, excerpted from
Ford, Daniel, The Button, New York: Simon and Schuster, 1985.

528 Indiscrete Affairs · I

levels are. So-called “fault-tolerant” computers, for ex-
ample, are particularly good at coping with hardware
failures, but the software that runs on them is not
thereby improved.9

4. Correctness and Intention: What does correct mean,
anyway? Suppose the people want peace, and the Pres-
ident thinks that means having a strong defense, and
the Defense Department thinks that means having
nuclear weapons systems, and the weapons designers
request control systems to monitor radar signals, and
the computer companies are asked to respond to six
particular kinds of radar pattern, and the engineers
are told to build signal amplifiers with certain circuit
characteristics, and the technician is told to write a
program to respond to the difference between a two-
volt and a four-volt signal on a particular incoming
wire. If being correct means doing what was intended,
whose intent matters? The technician’s? Or what, with
twenty years of historical detachment, we would say
should have been intended?

With a little thought any of you could extend this list yourself.
And none of these issues even touch on the intricate technical
problems that arise in building the mathematical models of
software and systems used in the so-called “correctness” proofs.
But, as I said, I want to focus on what I take to be the most
important issue underlying all of these concerns: the pervasive
use of models. Models are ubiquitous not only in computer
science but also in human thinking and language; their very
familiarity makes them hard to appreciate. So we will start
simply, looking at modeling on its own, and come back to cor-
rectness in a moment.

9. Developing software for fault-tolerant systems is in fact an extremely
tricky business.

a2

 8 · Limits of Correctness (VC.08)

 529

 3 The Permeating Use of Models
When you design and build a computer system, you first for-
mulate a model of the problem you want it to solve, and then
construct the computer program in its terms. For example, if
you were to design a medical system to administer drug ther-
apy, you would need to model a variety of things: the patient,
the drug, the absorption rate, the desired balance between
therapy and toxicity, and so on and so forth. The absorption
rate might be modeled as a number proportional to the pa-
tient’s weight, or proportional to body surface area, or as some
more complex function of weight, age, and sex.

Similarly, computers that control traffic lights are based on
some model of traffic—of how long it takes to drive across
the intersection, of how much metal cars contain (the signal
change mechanisms are triggered by wires buried under each
street). Bicyclists, as it happens, often have problems with au-
tomatic traffic lights, because bicycles do not exactly fit the
model: they do not contain enough iron to trigger the metal
detectors. I also once saw a tractor get into trouble because it
could not move as fast as the system “thought” it would: the
cross-light went green when the tractor was only half-way
through the intersection.

To build a model is to conceive of the world in a certain
delimited way. To some extent you must build models before
building any artifact at all, including televisions and toasters,
but computers have a special dependence on these models:
you write an explicit description of the model inside the computer,
in the form of a set of rules or what are called representa-
tions—essentially linguistic formulae encoding, in the terms
of the model, the facts and data thought to be relevant to the
system’s behavior. It is with respect to these representations
that computer systems work. In fact that is really what com-
puters are (and how they differ from other machines): they
run by manipulating representations, and representations are

a3

a4

530 Indiscrete Affairs · I

always formulated in terms of models. This can all be summa-
rized in a slogan: no computation without representation.

The models, on which the representations are based, come
in all shapes and sizes. Balsa models of cars and airplanes, for
example, are used to study air friction and lift. Blueprints can
be viewed as models of buildings; musical scores as models of
a symphony. But models can also be abstract. Mathematical
models, in particular, are so widely used that it is hard to think
of anything that they have not been used for: from whole so-
cial and economic systems, to personality traits in teenagers,
to genetic structures, to the mass and charge of sub-atomic
particles. These models, furthermore, permeate all discus-
sion and communication. Every expression of language can be
viewed as resting implicitly on some model of the world.

What is important for our purposes is that every model
deals with its subject matter at some particular level of abstrac-
tion, paying attention to certain details, throwing away oth-
ers, grouping together similar aspects into common catego-
ries, and so forth. So the drug model mentioned above would
probably pay attention to the patients’ weights, but ignore
their tastes in music. Mathematical models of traffic typically
ignore the temperaments of taxi drivers. Sometimes what is
ignored is [considered to be] at too “low” a level, sometimes
too “high”; it depends on the purposes for which the model is
being used. So a hospital blueprint would pay attention to the
structure and connection of its beams, but not to the arrange-
ments of proteins in the wood the beams are made of, nor to
the efficacy of the resulting operating room.

Models have to ignore things exactly because they view the
world at a level of abstraction (‘abstraction’ is from the Latin
abstrahere, ‘to pull or draw away’). And it is good that they do:
otherwise they would drown in the infinite richness of the
embedding world. Though this is not the place for metaphys-
ics, it would not be too much to say that every act of concep-

a5

a6

 8 · Limits of Correctness (VC.08)

 531

tualization, analysis, categorization, does a certain amount of
violence to its subject matter, in order to get at the underlying
regularities that group things together. If you do not commit
that act of violence—do not ignore some of what is going on—
you would become so hypersensitive and so overcome with
complexity that you would be unable to act.

To capture all this in a word, I will say that models are in-
herently partial. All thinking, and all computation, are simi-
larly partial. Furthermore—and this is the important point—
thinking and computation have to be partial: that’s how they
are able to work.

 4 Full-blooded Action
Something that is not partial, however, is action. When you
reach out your hand and grasp a plow, it is the real field you
are digging up, not your model of it. Models, in other words,
may be abstract, and thinking may be abstract, and some as-
pects of computation may be abstract, but action is not. To
actually build a hospital, to clench the steering wheel and drive
through the intersection, or to inject a drug into a person’s
body, is to act in the full-blooded world, not in a partial or
distilled model of it.

This difference between action and modeling is extraordi-
narily important. Even if your every thought is formulated in
the terms of some model, to act is to take leave of the model
and participate in the whole, rich, infinitely variegated world.
For this reason, among others, action plays a crucial role, es-
pecially in the human case, in grounding the more abstract
processes of modeling or conceptualization. One form that
grounding can take, which computer systems can already take
advantage of, is to provide feedback on how well the modeling
is going. For example, if an industrial robot develops an in-
ternal three-dimensional representation of a wheel assembly
passing by on a conveyor belt, and then guides its arm towards

a7

a8

532 Indiscrete Affairs · I

that object and tries to pick it up, it can use video systems
or force sensors to see how well the model corresponded to
what was actually the case. The world does not care about the
model: the claws will settle on the wheel just in case the actu-
alities mesh.

Feedback is a special case of a very general phenomenon:
you often learn, when you do act, just how good or bad your
conceptual model was. You learn, that is, if you have adequate
sensory apparatus, the capacity to assess the sensed experience,
the inner resources to revise and reconceptualize, and the lux-
ury of recovering from minor mistakes and failures.

 5 Computers and Models
What does all this have to do with computers, and with cor-
rectness? The point is that computers, like us, participate in
the real world: they take real actions. One of the most impor-
tant facts about computers, to put this another way, is that
we plug them in. They are not, as some theoreticians seem
to suppose, pure mathematical abstractions, living in a pure
detached heaven. They land real planes at real airports; ad-
minister real drugs; and—as we know only too well—control
real radars, missiles, and command systems. Like us, in other
words, although they base their actions on models, they have
consequence in a world that inevitably transcends the par-
tiality of their enabling models. Like us, in other words, and
unlike the objects of mathematics, they are challenged by the
inexorable conflict between partial but tractable models and
actual but infinite world.

And, to make the only too obvious point: we in general
have no guarantee that the models are right—indeed we have
no guarantee about much of anything about the relationship
between model and world. As we will see, current notions of

“correctness” do not even address this fundamental question.

 • • •

a9

 8 · Limits of Correctness (VC.08)

 533

In philosophy and logic, as it happens, there is a very precise
mathematical theory called “model theory.” You might think
that it would be a theory about what models are, what they are
good for, how they correspond to the worlds they are models
of, and so forth. You might even hope this was true, for the
following reason: a great deal of theoretical computer science,
and all of the work in program verification and correctness,
historically derives from this model-theoretic tradition, and
depends on its techniques. Unfortunately, however, model
theory does not address the model-world relationship at all.
Rather, what model theory does is to tell you how your de-
scriptions, representations, and programs correspond to your
model.

The situation, in other words, is roughly as depicted in fig-
ure 1. You are to imagine a description, program, computer
system (or even a thought—they are all similar in this regard)
in the left hand box, and the very real world in the right. Me-
diating between the two is the inevitable model, serving as an

World

Nuclear cloud over Hiroshima, 1945

Computer

M
od
el

α β

Figure 1 — Computers, Models, and the Embedding World

Note: picture will be changed

534 Indiscrete Affairs · I

idealized or pre-conceptualized simulacrum of the world, in
terms of which the description or program or whatever can
be understood. One way to understand the model is as the
glasses through which the program or computer looks at the
world: it is the world: it is the world, that is, as the system sees
it (though not, of course, as it necessarily is).

The technical subject of “model theory,” as I have already
said, is a study of the relationship on the left [labeled α]. What
about relationship on the right [labeled β]? The answer, and
one of the main points I hope you will take away from this
discussion, is that, at this point in intellectual history, we have
no theory of this right-hand side relationship.

There are lots of reasons for this [lack], some very com-
plex. For one thing, most of our currently accepted formal
techniques were developed during the first half of this cen-
tury to deal with mathematics and physics. Mathematics is
unique, with respect to models, because (at least to a first level
of approximation) its subject matter is the world of models
and abstract structures, and therefore the model-world rela-
tionship is relatively unproblematic. The situation in physics
is more complex, of course, as is the relationship between
mathematics and physics. How apparently pure mathemati-
cal structures can be so successfully used to model the mate-
rial substrate of the universe is a question that has exercised
physical scientists for centuries. But the point is that, whether
or not one believes that the best physical models do more jus-
tice and therefore less violence to the world than do models in
so-called “higher-level” disciplines like sociology or economics,
formal techniques do not themselves address the question of
[the model’s] adequacy.

Another reason we do not have a theory of the right-hand
side is that there is very little agreement on what such a theory
would look like. In fact all kinds of question arise when one
studies the model-world relationship explicitly, about whether
it can be treated formally at all, whether it can be treated rig-

a10

a11

 8 · Limits of Correctness (VC.08)

 535

orously, even if not formally (and what the relationship is be-
tween those two), about whether any theory will be more than
usually infected with the prejudices and preconceptions of the
theorist, and so forth. The investigation quickly leads to foun-
dational questions in mathematics, philosophy, and language,
as well as computer science. But none of what one learns in
any way lessens its ultimate importance. In the end, any ade-
quate theory of action, and, consequently, any adequate theory
of correctness, will have to take the model-world relationship
into account.

 6 Correctness and Relative Consistency
Let’s get back, then, to computers, and to correctness. As I
mentioned earlier, the word ‘correct’ is already problematic,
especially as it relates to underlying intention. Is a program
correct when it does what we have instructed it to do? or what
we wanted it to do? or what history would dispassionately say
it should have done? Analyzing what correctness should mean
is too complex a topic to take up directly. What I want to do,
in the time remaining, is to describe what sorts of correctness
we are presently capable of analyzing.

In order to understand this, we need to understand one
more thing about building computer systems. I have already
said that, when you design a computer system, you first de-
velop a model of the world, as indicated in Figure 1. But you
don’t, in general, ever get to hold the model in your hand: com-
puter systems, in general, are based on models that are purely
abstract. Rather, if you are interested in proving your program

“correct,” you develop two concrete things, structured in terms
of the abstract underlying model (although these are listed
here in logical order, the program is very often written first):

1. A specification: a formal description in some standard
formal language, specified in terms of the model, in
which the desired behavior is described; and

a12

536 Indiscrete Affairs · I

2. The program: a set of instructions and representations,
also formulated in the terms of the model, which the
computer uses as the basis for its actions.

How do these two differ? In various ways, of which one is par-
ticularly important. The program has to say how the behavior
is to be achieved, typically in a step-by-step fashion (and of-
ten in excruciating detail). The specification, however, is less
constrained: all it has to do is to specify what proper behav-
ior would be, independent of how it is accomplished. For ex-
ample, a specification for a milk delivery system might simply
be: “Make one milk delivery at each store, driving the short-
est possible distance in total.” That’s just a description of what
has to happen. The program, on the other hand, would have
the much more difficult job of saying how this was to be ac-
complished. It might be phrased as follows: “Drive four blocks
north, turn right, stop at Gregory’s Grocery Store on the cor-
ner, drop off the milk, then drive 17 blocks north-east…” Spec-
ifications, to use some of the jargon of the field, are essentially
declarative; they are like indicative sentences or claims. Pro-
grams, on the other hand, are procedural: they must contain
instructions that lead to a determinate sequence of actions.

What, then, is a proof of correctness? It is a proof that any
system that obeys the program will satisfy the specification.

There are, as is probably quite evident, two kinds of prob-
lems here. The first, often acknowledged, is that the correct-
ness proof is in reality only a proof that two characterizations
of something are compatible. When the two differ—i.e., when
you try to prove correctness and fail—there is no more reason
to believe that the first (the specification) is any more correct
than the second (the program). As a matter of technical prac-
tice, specifications tend to be extraordinarily complex formal
descriptions, just as subject to bugs and design errors and so
forth as programs. In fact they are very much like programs, as

a13

a14

 8 · Limits of Correctness (VC.08)

 537

this introduction should suggest. So what almost always hap-
pens, when you write a specification and a program, and try to
show that they are compatible, is that you have to adjust both
of them in order to get them to converge.

For example, suppose you write a program to factor a
number c, producing two answers a and b. Your specification
might be:

Given number c, produce numbers a and b such that a⨯b=c

This is a specification, not a program, because it does not tell
you how to come up with a and b; all it say is what proper-
ties a and b should have. In particular, suppose I say: “ok, c
is 5,332,114; what are a and b? Staring at the specification just
given will not help you to come up with the answer. Suppose,
on the other hand, given this specification, that you then write
a program—say, by successively trying pairs of numbers un-
til you find two that work. Suppose further that you then set
out to prove that your program meets your specification. And,
finally, suppose that this proof can be constructed (I will not
go into details here; I trust you can imagine that such a proof
could be constructed). With all three things in hand—pro-
gram, specification, and proof—you might think you were
done.

In fact, however, things are rarely that simple, as even this
simple example can show. In particular, suppose, after doing
all this work, that you try your program out on some simple
examples, confident that it must work because you have a
proof of its correctness. You randomly give it 14 as an input,
expecting 2 and 7. But in fact it gives you the answers a=1 and
b=14. In fact, you realize upon further examination, it will al-
ways give back a=1 and b=c. It does this, even though you have
a proof of its being correct, because you did not make your speci-
fication meet your intentions. You wanted both a and b to be
different from c (and also different from 1), but you forgot to

a15

a16

538 Indiscrete Affairs · I

say that. In this case you have to modify both the program and
the specification. A plausible new version of the latter would
be:

Given number c, produce numbers a and b such that a≠1
and b≠1 and a⨯b=c.

And so on and so forth; the point, I take it, is obvious. If the
next version of the program, given c=14, produces a=-1 and
b=-14, you would once again have met your new specification,
but still failed to meet your intention. Writing “good” specifi-
cations—which is to say, writing specifications that capture
your intention—is hard.

It should be apparent, nonetheless, that developing even
straightforward proofs of “correctness” is nonetheless very
useful. It typically forces you to delineate, very explicitly and
completely, the model on which both program and specifica-
tion are based. A great many of the simple bugs that occur in
programs, of which the problem of producing 1 and 14 was an
example, arise from sloppiness and unclarity about the model.
Such bugs are not identified, per se, by the proof, but they
are often unearthed in the attempt to prove [the equivalence].
And of course there is nothing wrong with this practice; any-
thing that helps to eradicate errors and increase confidence
is to be applauded. The point, rather, is to show exactly what
these proofs consist in.

In particular, as the discussion has shown, when you show
that a program meets its specifications, all you have done is
to show that two formal descriptions, slightly different in
character, are compatible. This is why I think it is somewhere
between misleading and immoral for computer scientists to
call this “correctness.” What is called a proof of correctness
is really a proof of the compatibility or consistency between
two formal objects of an extremely similar sort: program and
specification. As a community, we computer scientists should

a17

 8 · Limits of Correctness (VC.08)

 539

call this relative consistency, and drop the word ‘correctness’
completely.

What proofs of relative consistency ignore is the second prob-
lem intimated earlier. Nothing in the so-called program veri-
fication process per se deals with the right-hand side relation-
ship: the relationship between the model and the world. But,
as is clear, it is over inadequacies on the right hand side—inad-
equacies, that is, in the models in terms of which the programs
and specifications are written—that systems so commonly fail.

The problem with the moonrise, for example, was a prob-
lem of this second sort. The difficulty was not that the pro-
gram failed, in terms of the model. The problem, rather, was
that the model was overly simplistic; it did not correspond to
what was the case in the world. Or, to put it more carefully, since
all models fail to correspond to the world in indefinitely many
ways, as we have already said, it did not correspond to what
was the case in a crucial and relevant way. In other words, to
answer one of our original questions, even if a formal speci-
fication had been written for the 1960 warning system, and a
proof of correctness generated, there is no reason to believe
that potential difficulties with the moon would have emerged.

You might think that the designers were sloppy; that they
would have thought of the moon if they had been more care-
ful. But it turns out to be extremely difficult to develop real-
istic models of any but the most artificial situations, and to
assess how adequate these models are. To see just how hard it
can be, think back on the case of General Electric, and imag-
ine writing appliance specifications, this time for a refrigerator.
To give the example some force, imagine that you are contract-
ing the manufacture of the refrigerator out to an independent
supplier, and that you want to put a specification into the con-
tract that is sufficiently precise to guarantee that you will be
happy with anything that the supplier delivers that meets the
contract.

a18

540 Indiscrete Affairs · I

Your first version might be quite simple—say, that the req-
uisitioned device should maintain an internal temperature of
between 3 and 6 degrees Centigrade; not use more than 200
watts of electricity; cost less than $100 to manufacture; have
an internal volume of half a cubic meter; and so on and so
forth. But of course there are hundreds of other properties
that you implicitly rely on: it should, presumably, be structur-
ally sound: you would not be happy with a deliciously cool
plastic bag. It should not weigh more than a ton, or emit loud
noises. And it should not fling projectiles out at high speed
when the door is opened. In general, it is impossible, when
writing specifications, to include everything that you want: le-
gal contracts, and other humanly interpretable specifications,
are always stated within a background of commonsense, to
cover the myriad unstated and unstatable assumptions as-
sumed to hold in force. (Current computer, alas, have no com-
mon sense, as the cartoonists know so well.)

So it is hard to make sure that everything that meets your
specification will really be a refrigerator; it is also hard to make
sure that your requirements do not rule out perfectly good
refrigerators. Suppose for example a customer plugs a toaster
in, puts it inside the refrigerator, and complains that the ob-
ject they received does not meet the temperature specification,
and must therefore not be a refrigerator. Or suppose they try
to run it upside down. Or complains that it does not work in
outer space, even though you did not explicitly specify that it
would only work within the earth’s atmosphere. Or spins it at
10,000 rpm. Or even just unplugs it. In each case you would
say that the problem lies not with the refrigerator but with the
use. But how is use to be specified? The point is that, as well
as modeling the artifact itself, you have to model the relevant
part of the world in which it will be embedded. It follows that
the model of a refrigerator as a device that always maintains
an internal temperature of between 3 and 6 degrees is too

a19

 8 · Limits of Correctness (VC.08)

 541

strict to cover all possible situations. One could try to model
what appropriate use would be, though specifications do not,
ordinarily, even try to identify all the relevant circumstantial
factors. As well as there being a background set of constraints
with respect to which a model is formulated, there is also a
background set of assumptions on which a specification is al-
lowed at any point to rely.

 7 The Limits of Correctness
It’s time to summarize what we have said so far. The first
challenge to developing a perfectly “correct” computer sys-
tem stems from the sheer complexity of real-world tasks. We
mentioned at the outset various factors that contribute to
this complexity: human interaction, unpredictable factors of
setting, hardware problems, difficulties in identifying salient
levels of abstraction, etc. Nor is this complexity of only theo-
retical concern. A December 1984 report of the American
Defense Science Board Task Force on “Military Applications
of New-Generation Computing Technologies” identifies the
following gap between current laboratory demonstrations and
what will be required for successful military applications—ap-
plications they call “Real World; Life or Death.” In their esti-
mation the military now† needs (and, so far as one can tell,
expects to produce) an increase in the power of computer
systems of nine decimal orders of magnitude, accounting for
both speed and amount of information to be processed. That
is a 1,000,000,000-fold [one billion-fold] increase over cur-
rent research systems, equivalent to the difference between a
full century of the entire New York metropolitan area, com-
pared to one day in the life of a hamlet of one hundred people.
And remember that even current systems are already several
orders of magnitude more complex that those for which we
can currently develop proofs of relative consistency.

But sheer complexity has not been our primary subject

a20

a21

†I.e., in the mid-1980s.

542 Indiscrete Affairs · I

matter. The second challenge to computational correctness,
more serious, comes from the problem of formulating or
specifying an appropriate model. Except in the most highly
artificial or constrained domains, modeling an embedding
situation is an approximate, not a complete, endeavour. It has
the best hopes of even partial success in what Winograd has
called “systematic domains”: areas where the relevant stock
of objects, properties, and relationships are most clearly and
regularly predefined. Thus bacteria, or warehouse invento-
ries, or even flight paths of airplanes coming into airports, are
relatively systematic domains, at least compared to conflict ne-
gotiations, any situations involving intentional human agen-
cy, learning and instruction, and so forth. The systems that
land airplanes are hybrids—combinations of computers and
people—exactly because the unforeseeable happens, because
what happens is in part the result of human action, requiring
human interpretation. Although it is impressive how well the
phone companies can model telephone connections, lines, and
even develop statistical models of telephone use, at a certain
level of abstraction, it would nevertheless be impossible to
model the content of the telephone conversations themselves.

Third, and finally, is the question of what one does about
these first two facts. It is because of the answer to this last
question that I have talked, so far, somewhat interchange-
ably about people and computers. With respect to the ulti-
mate limits of models and conceptualization, both people and
computers are restrained by the same truths. If the world is
infinitely rich and variegated, then no prior conceptualization
of it, nor any abstraction, will ever do it full justice. That is
ok—or at least we might as well say that it is ok, since that is
the world we have got. What matters is that we never forget
about that richness—that we not think, with misplaced opti-
mism, that machines might magically have access to a kind of

“correctness” to which people cannot even aspire.

a22

 8 · Limits of Correctness (VC.08)

 543

It is time, to put this another way, that we change the tra-
ditional terms of the debate. The question is not whether ma-
chines can do things, as if, in the background, lies the implicit
assumption that the object of comparison is people. Plans to
build automated systems capable of making a “decision,” in
a matter of seconds, to annihilate Europe, say, should make
you uneasy; requiring a person to make the same decision in
a matter of the same few seconds should make you uneasy
too, and for very similar reasons. The problem is that there is
simply no way that reasoning of any sort can do justice to the
inevitable complexity of the situation, because of what reason-
ing is. Reasoning is based on partial models. Which means it
cannot be guaranteed to be correct. Which means, to suggest
just one possible strategy for action, that we might try, in our
treaty negotiations, to find mechanisms to slow our weapons
systems down.

It is striking to realize, once the comparison between machines
and people is raised explicitly, that we do not typically expect

“correctness” for people in anything like the form that that we
presume it for computers. In fact quite the opposite, and in a
revealing way. Imagine, in some by-gone era, sending a soldier
off to war, and giving him (it would surely have been a “him”)
final instructions. “Obey your commander; help your fellow-
soldier,” you might say, “and above all do your country honour.”
What is striking about this is that it is considered not just a
weakness, but a punishable weakness—a breach of morality—
to obey instructions blindly (in fact, and for relevant reasons,
you generally can’t follow instructions blindly; they have to be
interpreted to the situation at hand). You are subject to court
martial, for example, if you violate fundamental moral prin-
ciples, such as murdering women and children, even if follow-
ing strict orders.

In the human case, in other words, our social and moral

544 Indiscrete Affairs · I

systems seem to have built in in an acceptance of the uncer-
tainties and limitations inherent in the model-world relation-
ship [relation β in figure 1]. We know that the assumptions and
preconceptions built into instructions will sometimes fail, and
we know that instructions are always incomplete; we exactly
rely on judgment, responsibility, consciousness, and so forth,
to carry someone through those situations—all situations, in
fact—where model and world part company. In fact we never
talk about people, in terms of their overall personality, be-
ing correct; we talk about people their being reliable, a much
more substantial term. It is individual actions, fully situated
in a particular setting, that are correct or incorrect, not people
in general, or systems. What leads to the highest number of
correct human actions is a person’s being reliable, experienced,
capable of good judgment, etc.

There are two possible morals here, for computers. The first
has to do with the notion of experience. In point of fact, pro-
gram verification is not the only, or even the most common,
method of obtaining assurance that a computer system will do
the right thing. In the real world, programs are usually judged
acceptable, and are typically accepted into use, not because
we prove them “correct,” but because they have shown them-
selves relatively reliable in their destined situations for some
substantial period of time. And, as part of this experience, we
expect them to fail: there always has to be room for failure.
Certainly no one would ever accept a program without this in
situ testing: a proof of correctness is at best added insurance,
not a replacement, for real-life experience. Unfortunately, for
the ten million lines of code that is supposed to control and
coordinate the Star Wars Defense System, there will never,
God willing, be an in situ test.

One answer, of course, if genuine testing is impossible, is
to run a simulation of the real situation. But simulation, as
our diagram should make clear, tests only the left-hand side re-

 8 · Limits of Correctness (VC.08)

 545

lationship [α in figure 1]. Simulations are defined in terms of
models; they do not test the relationship between the model
and the world. That is exactly why simulations and tests can
never replace embedding a program in the real world. All the
war games we hear about, and hypothetical military scenarios,
and electronic battlefield simulators, and so forth, are all based
on exactly the kinds of models we have been talking about
all along. In fact the subject of simulation, worthy of a whole
analysis on its own, is really just our whole subject welling up
all over again.

I said earlier that there were two morals to be drawn, for the
computer, from the fact that we ask people to be reliable, not
to be correct. The second moral is for those who, when con-
fronted with the fact that genuine or adequate experience can-
not be had, would say “Oh, well, let’s build responsibility and
morality into computers—if people can have it, there is no
reason why machines can’t have it too.” Now I will not argue
that this is inherently impossible, in some metaphysical or ul-
timate philosophical sense, but a few short comments are in
order. First, from the fact that humans sometimes are respon-
sible, it does not follow that we know what responsibility is:
from tacit skills no explicit model is necessarily forthcoming.
We simply do not know what aspects of the human condi-
tion underlie the modest levels of responsibility to which we
sometimes rise. And second, with respect to the goal of build-
ing computers with even human levels of full reliability and
responsibility, I can state with surety that the present state of
artificial intelligence is about as far from this as mosquitoes
are from flying to the moon.

But there are deeper morals even than these. The point
is that even if we could make computers reliable, they still
wouldn’t necessarily always do the correct thing. People are
not provably “correct,” either; that’s why we hope they are

a23

546 Indiscrete Affairs · I

responsible, and surely one of the major ethical facts is that
correctness and responsibility do not coincide. Even if, in
another 1,000 years, someone were to devise a genuinely re-
sponsible computer system, there is no reason to suppose that
it would achieve “perfect correctness” either, in the sense of
never doing anything wrong. This isn’t a failure, in the sense
of a performance limitation; it stems from the deeper fact that
models must be abstract, in order to be useful. The lesson to
be learned from the violence inherent in the model-world re-
lationship, in other words, is that there is an inherent conflict
between the power of analysis and conceptualization, on the
one hand, and sensitivity to the infinite richness, on the other.

But perhaps this is an overly abstract way to put it. Perhaps,
instead, we should just remember that there will always be
another moonrise.

a24

a25

 8 · Limits of Correctness (VC.08)

 547

 Annotations1

a0.5 ·… «…Write a general intro. A very “public” paper, written on a long
plane flight from San Francisco to Budapest; more read than every-
thing else I’ve written combined. INcluded here because it exempli-
fies, in concrete, real-world, publicly-accessible way, many of the
issues with which the technical work is concerned: deferential rela-
tions to the real world external to the computer; issues of registra-
tion and intent, etc. …»

a1 ·3/0/-3:-1 It is significant that the programs of any length for which correctness
has been proved (including the ones listed here: operating systems
and compilers) have “internal” subject matters—i.e., they are pro-
grams whose task domains are, reflexively, programs and comput-
ing. Not only is programming a paradigmatic “systematic domain,”
in the sense discussed at ……,1 but formalising the progamming do-
main is already part of the task of proving any program correct, and
so dealing with programs about programs is the simplest possible
case, with the possible exception of pure mathematics.

Needless to say, nuclear war is not an internal subject matter.
a2 ·7/-1:8/0 Questions about the form of and relations among theories of one

and the same system at multiple levels of analysis permeate sci-
ence and philosophy of science (e.g., in the case of the mind, about
what sorts of regularities hold of the human mind/brain at social,
psychological, neurological, biochemical, chemical, and physical
levels). One of the most powerful and ubuiquitous techniques in
all of computing is the ability to “implement” one system on top
of another, engendering the same set of questions (“What holds
true at what level?”) for any computer system of greater than trivial
complexity. Not only do we still have no theory of how to allocate
responsibility and/or theoretical attention across these levels; we do
not even have conceptual machinery to help us identify the salient
levels. «…References to other annotations on this point…»

One particularly challenging point ties into the semantical analy-
ses that permeate the discussion of 3Lisp and reflection in Part b: the
inclusion of declarative or representation semantics (φ) along with
procedural or behavioral (ψ). One of the reasons representation is
challenging is that representation does not “cross implementation

†References are in the form page/paragraph/line; with ranges (of any type)
indicated as x:y. For details see the explanation on p.·…
1. See also annotation a…

548 Indiscrete Affairs · I

levels,” in the sense that if a system representing the traffic patterns
of itinerant farm workers is implemented in c++, then it may be
more natural to say that a given c++ variable represents an element
in the data base rather than representing what the data base element in
turn represents—e.g., a particular farm worker. «…Refs to annota-
tions where crossing implementation boundaries is discussed…» Or
for a more philosophically familiar example, imagine a first-order
logic representation of the English sentence “A fire has started in
engine room #2.” The natural semantical analysis of the variables
employed in the logical axiomatisation would be likely to take their
referential domain to consist of English sentences themselves, rather
than what those English sentences are about—viz, fires.

Put it this way: issues of ‘use’ and ‘mention’ in computer sys-
tems are stupefyingly complex. Cf. chapter 12 (“The Correspondence
Continuum”).

a3 ·9/1/1:2 The way this is phrased (“you first formulate a model of the prob-
lem you want it to solve”) suggests that the model formulation must
be witting and explicit—which is by no means always the case. The
point is merely that any program must be framed, implicitly or ex-
plicitly, with respect to what I am here calling a “model” of its sub-
ject matter—i.e., with respect to a “take” or “way of conceptualising”
its task domain. As noted in «…», I would today use the terminology
of ‘registration’ instead of that of models—which I believe would
make the analysis more accute, though perhaps less widely acces-
sible. Thus I would tend to write the first sentence along something
like the following lines: that when you design and build a computer
system, you do so “in terms of an (implicit or explicit) registration
of the problem you want to solve.”

Cf. also the discussion at …, and the immediately following an-
notation (a…); also «…» in Volume ii, on how such registrations
need not be (what I there call) conceptual.

a4 ·9/-1/1:2 When I say “[t]o build a model is to conceive of the world in a
certain delimited way” I am effectively defining my use of the term
‘model.’ That is, the sentence should be read as meaning roughly
that I employ the phrase “use a model” as shorthard for “conceive
of the world in a certain delimited way.” Cf. also the last sentence
of 10/1 (“[e]very expression of language can be viewed as resting im-
plicitly on some model of the world”), as well as the discussion in

 8 · Limits of Correctness (VC.08)

 549

«…» of how, were I writing this today, I would use the terminology
of ‘registration’ instead of that of models. (See also the immediately
preceding annotation.)

a5 ·9/-1:10/0 As noted in «…», for the purpose of this public talk I presented radi-
cally simplified views of computing, in order to make the overall
claims accessible. Moreover, the “analysis” in this paragraph is not
only simplisitic (e.g., in equating computational representations
with descriptions), but conveys a far more ringing endorsement of
the “formal symbol manipulation” construal of computing than I
believed even at the time.

Times have also changed. It is no longer considered necessary for
programs to represent the structure of the task domains in which
they work—especially to represent it explicitly, in a set of language-
like formulae or expressions. A great deal of “situated artificial
intelligence,”2 the use of network “models” in dynamic-systems
based software, etc., the development of machine learning based
on “training” a large set of real-valued nodes and links, etc., which
has taken place over the twenty-five years since this paper was writ-
ten, can be understood as various kinds of attempt exactly to avoid
such explicit task domain representation. However: (i) it remains
overwhelmingly likely that any software system designed and built
to control a major military system of the sort being discussed would
still be built on top of an explicit model—if for no other reason than
that this design strategy allows the model to be updated, if and
as appropriate, when the systems involved change (e.g., the nature
and number of missiles, sensors, etc.), without having to build the
entire code base over again; and (ii) even machine learning net-
works and connectionist systems and the like rely on models in the
relatively weak sense being employed here3 (some even develop their
own)—it is just that the representation of the model in the system may
be less explicit that was taken for granted decades ago.

a6 ·10/-1/-2:-1 Re “this is not the place for metaphysics”: cf. of course o3, aos, and
the discussion of “the ontological wall” in ch. 1 at …….

a7 ·11/1/4 The partiality and partial (dis)connection of thinking computation
is a major theme of o3; cf. also the forthcoming aos.

a8 ·11/-1/3:4 Though too simplistically formulated, the position underlying this
claim is one I would likely endorse even if it were more carefully

2. «Ref mitacs article.»
3. Cf. annotation a4, above.

550 Indiscrete Affairs · I

framed. Even to act on a model as such, for example, is to act on
something whose drenched actuality transcends our registration of
it, I believe—even if the model is an abstract mathematical one.

The real difficulty with the statement is its seeming implication
that are phenomena that stand in contrast to action—e.g., that
reasoning, or inference, or bare computation,3.5 may somehow

“escape” from this property of having consequences beyond those
captured in the ways they are registered. This suggestion is one with
which I would profoundly disagree (and would have disagreed, even
when the paper was written).

a9 ·12/1 The sorts of cognitive resource described in this paragraph are ex-
actly the constituents of reflection that the papers in Part b are an
attempt to investigate and explain.

a10 ·14/2/4:8 This claim that mathematics is relatively unproblematic, as regards
modeling, is an example of the sort of simplification mentioned
in «…» (cf. also annotation «…») that were made for purposes of
this being a public talk. Modeling in mathematics is in fact a huge-
ly complex topic—even the merits and demerits of such standard
forms of modeling as are used to identify the integers with sets of
sets of that cardinality (so that the number two is identified with the
set of all sets that have two members, etc.) and the use of Cauchy
sequences and Dedekind cuts to model the real numbers are topics
that could—and have—occupied entire books.

It might be thought that, even if they are complex, mathemati-
cal models of mathematical entities would escape from the general
challenges to models being raised in this paper, but I do not believe
that that is true, either.

a11 ·… Cf. Eugene Wigner’s “The unreasonable effectiveness of mathemat-
ics in the natural sciences,” Communications in Pure and Applied Math-
ematics, Vol. 13, No. 1 (February 1960). New York: John Wiley & Sons,
Inc.

a12 ·14/-1/1: This question, about the nature and possibility of a semantical anal-
 ·15:0/4 ysis of models treating the model-world relationship, was a topic of

intense discussion in the early years at clsi (mid-to-late 1980s), es-
pecially between myself and Jon Barwise. Barwise4 was in principle

3.5. E.g., the next sentences reference to “more abstract processes of modeling
or conceptualization.”
4. Jon was commonly referred to as “Barwise,” in part because csli was replete
with Jon’s and John’s (Barwise, Perry, Etchemendy, Seely Brown, and others).

 8 · Limits of Correctness (VC.08)

 551

interested in studying the model-world relation, and was a strong
critic of the unbridled use of models in mathematics itself.5 Never-
theless, as a committed mathematician, he was unswervingly drawn
to use mathematical structures for all semantical analyses, whereas
in that period I myself was growing increasingly unhappy with the
practice—especially for analyses of the sort being discussed in this
paper. Among other reasons, I was troubled by the fact that the
identity conditions in mathematics are so much sharper and more
definite than anything I felt to be true in the real worlds I wanted to
understand (cf. o3).

The issues between Barwise and I went deep, ultimately driving
an irrevocable wedge in what up until that point had been a strong
sense of intellectual partnership—though we remained friends to
the end.

a13 ·16/0/1:2 In describing a program as consisting of “a set of instructions and
representations,”6 I was embracing an informal mixture of the ingre-
diential and specificational views of programs described in ch. 2.

a14 ·16/1/-5:-3 Needless to say, the sentence “Make one milk delivery at each store”
is in imperative, not indicative, mood. This is another place7 where,
in deference to this being a public talk, the argument is simplisti-
cally phrased. More technically, one might say (it often is said) that
a program must specify an effective procedure for bringing about a
result, whereas a specification must identify the result that is to be
produced, but is not subject to the constraint of showing how it can
be effectively achieved. Just what ‘effective’ means, however, is far
from clear; the sense is normally conveyed through examples. There
is no doubt that programmers develop a keen appreciation of what
is and what is not effective; but formulating a theory of compu-
tational efficacy is tantamount to develoing a theory of computa-
tion tout court—something that, contrary to what is ubiquitously
assumed in theoretical computer science, I do not believe we yet
possess. See ch. 1, and aos.

a15 ·17/3/1:3 The sentence is still in imperative mood; cf. annotation a14, above.
a16 ·17/3/3:5 Presumably what you had in mind were some multplicative combi-

nations of 2, 29, 149, and 617.

5. Cf. annotation a10, above; and «…».
6. Emphasis added.
7. Cf. also annotations a… and a…, above.

552 Indiscrete Affairs · I

a17 ·18/3/7 This sentence was so simply stated that it ended up confusing. What
is “sloppy and unclear” is that the requirement failed to exclude
negative answers, but it is not obvious—in fact it is not clear that
there is a fact of the matter as to—whether that is a problem in the
model per se, or a problem with the specification stated in terms of
that model. Either option is available: one could restrict the model
to the natural numbers (all positive), or leave the model as the inte-
gers (positive and negative) and restate the requirement along the
following lines:

Given number c, produce positive numbers a and b such that
a≠1 and b≠1 and a⨯b=c.

The problem is that the requirement, as stated, leaves the model
implicit. A fully formal proof would (or anyway should) explicitly
identify the intended model—but it is easy to imagine something
taken to be a proof in which that decision remained implicit. For
all the reasons explicated in the text, what it is to be a “proof ” is as
prone to error, presupposition, and false assumption as any other
issue. Formality, proof, mathematics, etc., are not watertight no-
tions; at the bottom, there are inevitably sieves.

Cf. also annotation a…, below.
a18 ·19/2/-2:-1 That is: there is no reason to believe that the problem of the pro-

gram’s responding inappropriately to lunar reflections would have
emerged in the course of developing the proof. They would still have
emerged, as in fact they did, on the fateful night.

a19 ·20/1/3 Though the term ‘Celsius’ was formally adopted in 1948, long before
the paper was written, ‘Centigrade’ was still in common use at the

time—far more then than at present.
a20 ·20/-1:21/0 The discussion in this paragraph shifts in various ways—focusing

first on constraints for a supplier (which requires ruling out strange
contraptions), then on what would be required in order for the
specifications to ensure that the refrigerator works correctly, which
brings up the fact that customers, as well as suppliers, are norma-
tively bound by (or in) a background set of tacit assumptions about
appropriate use. The differences could be sorted out, but the over-
all thrust should be clear enough.

a21 ·21/1/8:13 «Ref»

 8 · Limits of Correctness (VC.08)

 553

a22 ·22/0/7 «Ref; probably either in Bringing Design to Software or in Understanding
Computers and Cognition : A New Foundation for Design.»

a23 ·25/1/7:9 As is evident from “The Foundations of Computing” (ch. 1) and aos,
not only do I not believe that machines are barred from shouldering
responsibility; I am relatively sure that we will, in due course, con-
struct responsible artifacts as a matter of course—or rather, more
carefully, that we will construct devices, other than through the
traditional nine-month method, that are capable of taking up an
intentional poistion within our shared, normatively drenched, soci-
ety in such a way as to come to carry various kinds of repsonsibilty
for their actions. As indicated in the next paragraph (·25/-1:·26/0),
however: that would not matter, vis-a-vis correctness. Such systems
would no more be “correct” than we are—and should no more be
asked to decide the fate of Europe in six seconds that should any
member of the species homo sapiens.

a24 ·26/0/3 “1000 years” was rhetorical flourish; I did not then, and do not now,
think it will take a millennium to develop synthetic devices capable
of shouldering genuine responsibility.

More seriously, two overlapping reasons suggest that the emer-
gence of genuine responsibility in artefacts (leaving aside, for the
sorts of reasons explored in ch. 1, the question of whether such sys-
tems will be computers) will be a gradual and incremental process,
rather than anything remotely like a singular event. First, responsi-
bility is a vastly complex phenomenon—as many-splendored as any
dimension of the human condition. Not only is it far from binary;
it would be harrowingly reductive even to describe it is a “matter
of degree.” By the same token, and in spite of the ubiquity of the
phrase, there is no sense in which humans can be remotely claimed
to assume “full responsibility”—whatever such a notion could be
made out to mean. Against such a background, it is overwhelm-
ingly likely that the responsibilities shouldered by synthetic devices
will emerge gradually, in a piece-meal, incremental, and not neces-
sarily even particularly explicable fashion. Second, and considerably
complicating the first point, it is far more likely that the distinction
between people and “machines” (i.e., synthesized systems) will blur,
possibly even to oblivion, long before anything like adult levels of
responsibility are carried by purely synthetic processes or devices.
We will all be cyborgs long before substantial responsibility weighs

554 Indiscrete Affairs · I

on pure alterity. Note, took, that this second issue will wreak havoc
with human notions of censure, punishment, threat, stakes, etc.,
currently felt to be constitutive of at least the practice, if not the
character, of responsibility.

a25 ·26/0/7:8 It would have been better if the paper had said “models must ab-
stract, in order to be useful,” rather than that “models must be ab-
stract.” The point has to do with the inherent violence done to the
unutterable richness of the ineffable world by any act of conceptu-
alisation or expression; cf. “The Nonconceptual World,” ch. … in
Volume ii; and o3.

	IA · I · C · 08 (Limits) — Body (C.04)
	IA · I · C · 08 (Limits) — Annotations (C.04)

