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  The Limits of Correctness

  Abstract†

used, in its own terms, to “prove programs correct.” From its 
name, someone might easily conclude that a program that had 
been proven correct would never make any mistakes, or that it 
would always follow its designers intentions. In fact, however, 
what are called proofs of correctness are really proofs of the rela-

program, one of the model in terms of which the program is 
formulated. Part of assessing the correctness of a computer 
system, however, involves assessing the appropriateness of this 
model. Whereas standard semantical techniques are relevant 
to the program-model relationship, we do not currently have 
any theories of the further relationship between the model 
and the world in which the program is embedded.

In this paper I sketch the role of models in computer sys-
tems, comment on various properties of the model-world rela-

the term ‘correctness’ should be changed to ‘consistency.’ In ad-
dition I argue that, since models cannot in general capture all 

-
ness is inherently unattainable, for people or for computers.

† Techni-
cal Report ; not in the  newsletter version «check out 
others».

Version  ( June , )

Copyright © 1985 Brian Cantwell Smith.  Originally presented at a Symposium on Uninten-
tional Nuclear War at the Fifth Congress of the International Physicians for the Prevention Nuclear 
War, Budapest, Hungary, June 28–July 1, 1985. The version delivered there was subse-
quently reprinted: (i) as Center for the Study of Language and Information Report 
CSLI–85–36, Stanford, California: Stanford University, Oct. 1985, 22 pp.; (ii) in D. 
Johnson & H. Nissenbaum (eds.), Computers, Ethics & Social Values, Englewood Cli�s, NJ: 
Prentice Hall, 456–69; (iii) in Colburn, T. R., Fetzer, J. H., & Rankin T. L. (eds.), Program 
Verification, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993, pp. 275–93; 
and (iv) in Kling, R. (ed.), Computerization and Controversy: Value Conflicts and Social Choices 
(2nd Ed.), San Diego: Academic Press, pp. 810–25. Annotations added in 2014.



522 Indiscrete Affairs · I

 1 Introduction
On October 5, 1960, the American Ballistic Missile Early 
Warning System station at Thule, Greenland, indicated a 
large contingent of Soviet missiles headed towards the United 
States.1 Fortunately, common sense prevailed at the informal 
threat-assessment conference that was immediately convened: 
international tensions were not particularly high at the time, 
the system had only recently been installed, Khrushchev† was 
in New York, and all in all a massive Soviet attack seemed very 
unlikely. And so no devastating counterattack was launched. 
What was the problem? The moon had risen, and was reflect-
ing radar signals back to earth. Needless to say, this lunar re-
flection had not been predicted by the system’s designers.

Over the last ten years,‡ the United States Defense Depart-
ment has spent many millions of dollars on a computer tech-
nology called “program verification”—a branch of computer 
science whose business, in its own terms, is to “prove programs 
correct.”  Program verification has been studied in theoretical 
computer science departments since a few seminal papers in 
the 1960s,2 but it has only recently started to gain in public 
visibility, and to be applied to real world problems. General 
Electric, to consider just one example, has initiated verification 

1. Edmund Berkeley, The Computer Revolution, Doubleday, 1962, pp. 
175–77, citing newspaper stories in the Manchester Guardian Weekly 
of Dec. 1, 1960, a upi dispatch published in the Boston Traveler of Dec. 
13, 1960, and an ap dispatch published in the New York Times on Dec 
23, 1960.
†Nikita Khrushchev, Premier of the Soviet Union from 1958–64.
‡I.e., in the 1970s and early 1980s (the paper was presented in 1985).
2. McCarthy, John, “A Basis for a Mathematical Theory of Computa-
tion,” 1963, in P. Braffort and D. Hirschberg, eds., Computer Program-
ming and Formal Systems, Amsterdam: North-Holland, 1967, pp. 
33–70. Floyd, Robert, “Assigning Meaning to Programs,” Proceedings 
of Symposia in Applied Mathematics 19, 1967 (also in F. T. Schwartz, 
ed., Mathematical Aspects of Computer Science, Providence: American 
Mathematical Society, 1967). Naur, P., “Proof of Algorithms by General 
Snapshots,” bit Vol. 6 No. 4, pp. 310–16, 1966.



 8 · Limits of Correctness (VC.08)

 523

projects in their own laboratories; they would like to prove 
that the programs used in their latest computer-controlled 
washing machines will not have any “bugs” (even a single seri-
ous one in a major product can destroy their profit margin).3 

Although it used to be that only the simplest programs could 
be “proven correct”—programs to put simple lists into order, 
to compute simple arithmetic functions, etc.—slow but steady 
progress has been made in extending the range of verification 
techniques. Recent papers have reported correctness proofs 
for somewhat more complex programs, including small oper-
ating systems, compilers, and other materiel of modern system 
design.4

What, we do well to ask, does this new technology mean? 
How good are we at it? For example, if the 1960 warning sys-
tem had been proven correct (which it was not), could we 
have avoided the problem with the moon? If it were possible 
to prove that programs being written to control automatic 
launch-on-warning systems were correct, would that mean 
there could not be a catastrophic accident? In systems now 
being proposed computers will make launching decisions in a 
matter of seconds, with no time for any human intervention 
(let alone for musings about Khrushchev’s being in New York). 
Do the techniques of program verification hold enough prom-
ise so that, if these new systems could all be proven correct, we 
could all sleep more easily at night?

These are the questions I want to look at today. And my 
answer, to give away the punch-line, is no. For fundamental 
reasons—reasons that anyone can understand—there are in-
herent limitations to what can be proven about computers and 
computer programs. Although program verification is an im-
portant new technology, useful, like so many other things, in 

3. Albert Stevens, Raytheon BBN Technologies, Inc. [called “Bolt, Be-
ranek and Newman” at the time], personal communication.
4. See for example R. S. Boyer and Moore, J S., eds., The Correctness 
Problem in Computer Science, London: Academic Press, 1981.
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its particular time and place, it should definitely not be called 
verification. Just because a program is “proven correct,” in other 
words, you cannot be sure that it will do what you intend.

First some background.

 2 General Issues in Program Verification
Computation is by now the most important enabling technol-
ogy of nuclear weapons systems: it underlies virtually every 
aspect of the defense system, from the early warning systems, 
battle management and simulation systems, and systems for 
communication and control, to the intricate guidance systems 
that direct the missiles to their targets. It is difficult, in as-
sessing the chances of an accidental nuclear war, to imagine a 
more important question to ask than whether these pervasive 
computer systems will or do work correctly.

Because the subject is so large, however, I want to focus on 
just one aspect of computers relevant to their correctness: the 
use of models in the construction, use, and analysis of comput-
er systems. I have chosen to look at modeling because I think 
it exerts the most profound and, in the end, most important 
influence on the systems we build. But it is only one of an 
enormous number of important questions. First, therefore—
in order to unsettle you a little—let me just hint at some of 
the equally important issues I will not address:

1. Complexity: At the current state of the art, only very 
simple programs can be proven correct. Although it is 
terribly misleading to assume that either the complex-
ity or power of a computer program is a linear function 
of length, some rough numbers are illustrative. The 
simplest possible arithmetic programs are measured in 
tens of lines; the current state of the verification art 
extends only to programs of up to several hundred. It 
is estimated that the systems proposed in the Strate-
gic Defense Initiative (Stars Wars), in contrast, will 
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require at least 10,000,000 [ten billion] lines of code.5 
By analogy, compare the difference between resolving 
a two-person dispute and settling the political prob-
lems of the Middle East. There is no a priori reason to 
believe that strategies successful at one level will scale 
to the other.

2. Human interaction: Not much can be “proven,” let 
alone specified formally, about actual human behavior. 
The sorts of programs that have so far been proven cor-
rect, therefore, do not include much substantial human 
interaction. On the other hand, as the moonrise ex-
ample indicates, it is often crucial to allow enough hu-
man intervention to enable people to override system 
mistakes. System designers, therefore, are faced with 
a very real dilemma: should they rule out substantive 
human intervention, in order to develop more confi-
dence in how their systems will perform; or should 
they include it, so that costly errors can be avoided or 
at least repaired? The Three Mile Island incident† is 
a trenchant example of just how serious this tradeoff 
can get: the system design provided for considerable 
human intervention, but then the operators failed to 
act “appropriately.” Which strategy leads to the more 
important kind of correctness?

5. Fletcher, James C., study chairman, and McMillan, Brockway, panel 
chairman, Report of the Study on Eliminating the Threat Posed by 
Nuclear Ballistic Missiles (U), Vol. 5, Battle Management, Communica-
tions. and Data Processing (U), u. s. Department of Defense, February 
1984.
†Five years before this paper was written, on March 28, 1979, a nucle-
ar power plant on Three Mile Island near Harrisburg, Pennsylvania, 
suffered a partial nuclear meltdown, resulting in the release of small 
amounts of radioactive iodine and radioactive gas into the environment. 
The reactor was ultimately brought under control, but to this day the 
accident remains the worst in the history of u.s. nuclear power industry. 
Though technically referring to the island itself, the term “Three Mile 
Island” still effectively serves as a proper name for the singular accident.
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A standard way out of this dilemma is to specify the 
behavior of the system relative to the actions of its opera-
tors. But as we will see below, this strategy pressures 
the designers to specify the system totally in terms of 
internal actions, not external effects. So you end up 
proving only that the system will behave in the way that 
it will behave (i.e., it will raise this line level 3 volts), not 
do what you want it to do (i.e., launch a missile only if 
the attack is real). Unfortunately, the latter is clearly 
what is important. Systems comprising computers and 
people must function properly as integrated systems; 
nothing is gained by showing that one cog in a mis-
shapen wheel is a very nice cog indeed.

Furthermore, large computer systems are dynamic, 
constantly changing, embedded in complex social set-
tings. Another famous “mistake” in the American de-
fense system occurred when a human operator mistak-
enly mounted a training tape, containing a simulation 
of a full-scale Soviet attack, onto a computer that, just 
by chance, was automatically pulled into service when 
the primary machine ran into a problem. For some 
tense moments the simulation data were taken to be 
the real thing.6 What does it mean to install a “correct” 
module into a complex social flux?

3. Levels of Failure: Complex computer systems must 
work at many different levels. It follows that they can 
fail at many different levels too. By analogy, consider 
the many different ways a hospital could fail. First, 
the beams used to frame it might collapse. Or they 
might perform flawlessly, but the operating room door 

6. See, for example, the Hart-Goldwater report to the Committee on 
Armed Services of the U.S. Senate: “Recent False Alerts from the Na-
tion’s Missile Attack Warning System” (Washington, d.c.: u.s. Govern-
ment Printing Office, Oct. 9, 1980); Physicians for Social Responsibility, 
Newsletter, “Accidental Nuclear War,” (Winter 1982), p. 1.
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might be too small to let in a hospital bed (in which 
case you would blame the architects, not the lumber 
or steel company). Or the operating room might be 
fine, but the hospital might be located in the middle of 
the woods, where no one could get to it (in which case 
you would blame the planners). Or, to take a different 
example, consider how a letter could fail. It might be 
so torn or soiled that it could not be read. Or it might 
look beautiful, but be full of spelling mistakes. Or it 
might have perfect grammar, but disastrous contents.

Computer systems are the same: they can be “cor-
rect” at one level—say, in terms of hardware—but fail 
at another (i.e., the systems built on top of the hard-
ware can do the wrong thing even if the chips are fine). 
Sometimes, when people talk about computers failing, 
they seem to think that only the hardware needs to 
work. And hardware does from time to time fail, caus-
ing machines to come to a halt, or yielding errant be-
havior (as for example when a faulty chip in another 
American early warning system sputtered random 
digits into a signal interpreted as indicating how many 
Soviet missiles had been sighted, again causing a false 
alert7). And the connections between the computers 
and the world can break; when the moonrise problem 
was first recognized, an attempt to override it failed 
because an iceberg had accidentally cut an undersea 
telephone cable.8

But the more important point is that, in order to be 
reliable, a system must be correct, or anyway reliable, 
at every relevant level; the hardware is just the starting 
place (and by far the easiest, at that). Unfortunately, 
however, we do not even know what all the relevant 

7. Ibid.
8. Berkeley, op. cit. See also Daniel Ford’s two-part article “The Button,” 
New Yorker, April 1, 1985, p. 43, and April 8, 1985, p. 49, excerpted from 
Ford, Daniel, The Button, New York: Simon and Schuster, 1985.
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levels are. So-called “fault-tolerant” computers, for ex-
ample, are particularly good at coping with hardware 
failures, but the software that runs on them is not 
thereby improved.9

4. Correctness and Intention: What does correct mean, 
anyway? Suppose the people want peace, and the Pres-
ident thinks that means having a strong defense, and 
the Defense Department thinks that means having 
nuclear weapons systems, and the weapons designers 
request control systems to monitor radar signals, and 
the computer companies are asked to respond to six 
particular kinds of radar pattern, and the engineers 
are told to build signal amplifiers with certain circuit 
characteristics, and the technician is told to write a 
program to respond to the difference between a two-
volt and a four-volt signal on a particular incoming 
wire. If being correct means doing what was intended, 
whose intent matters? The technician’s? Or what, with 
twenty years of historical detachment, we would say 
should have been intended?

With a little thought any of you could extend this list yourself. 
And none of these issues even touch on the intricate technical 
problems that arise in building the mathematical models of 
software and systems used in the so-called “correctness” proofs. 
But, as I said, I want to focus on what I take to be the most 
important issue underlying all of these concerns: the pervasive 
use of models. Models are ubiquitous not only in computer 
science but also in human thinking and language; their very 
familiarity makes them hard to appreciate. So we will start 
simply, looking at modeling on its own, and come back to cor-
rectness in a moment.

9. Developing software for fault-tolerant systems is in fact an extremely 
tricky business.

a2
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 3 The Permeating Use of Models
When you design and build a computer system, you first for-
mulate a model of the problem you want it to solve, and then 
construct the computer program in its terms. For example, if 
you were to design a medical system to administer drug ther-
apy, you would need to model a variety of things: the patient, 
the drug, the absorption rate, the desired balance between 
therapy and toxicity, and so on and so forth. The absorption 
rate might be modeled as a number proportional to the pa-
tient’s weight, or proportional to body surface area, or as some 
more complex function of weight, age, and sex.

Similarly, computers that control traffic lights are based on 
some model of traffic—of how long it takes to drive across 
the intersection, of how much metal cars contain (the signal 
change mechanisms are triggered by wires buried under each 
street). Bicyclists, as it happens, often have problems with au-
tomatic traffic lights, because bicycles do not exactly fit the 
model: they do not contain enough iron to trigger the metal 
detectors. I also once saw a tractor get into trouble because it 
could not move as fast as the system “thought” it would: the 
cross-light went green when the tractor was only half-way 
through the intersection.

To build a model is to conceive of the world in a certain 
delimited way.  To some extent you must build models before 
building any artifact at all, including televisions and toasters, 
but computers have a special dependence on these models: 
you write an explicit description of the model inside the computer, 
in the form of a set of rules or what are called representa-
tions—essentially linguistic formulae encoding, in the terms 
of the model, the facts and data thought to be relevant to the 
system’s behavior. It is with respect to these representations 
that computer systems work. In fact that is really what com-
puters are (and how they differ from other machines): they 
run by manipulating representations, and representations are 

a3
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always formulated in terms of models. This can all be summa-
rized in a slogan: no computation without representation.

The models, on which the representations are based, come 
in all shapes and sizes. Balsa models of cars and airplanes, for 
example, are used to study air friction and lift. Blueprints can 
be viewed as models of buildings; musical scores as models of 
a symphony. But models can also be abstract. Mathematical 
models, in particular, are so widely used that it is hard to think 
of anything that they have not been used for: from whole so-
cial and economic systems, to personality traits in teenagers, 
to genetic structures, to the mass and charge of sub-atomic 
particles. These models, furthermore, permeate all discus-
sion and communication. Every expression of language can be 
viewed as resting implicitly on some model  of the world.

What is important for our purposes is that every model 
deals with its subject matter at some particular level of abstrac-
tion, paying attention to certain details, throwing away oth-
ers, grouping together similar aspects into common catego-
ries, and so forth. So the drug model mentioned above would 
probably pay attention to the patients’ weights, but ignore 
their tastes in music. Mathematical models of traffic typically 
ignore the temperaments of taxi drivers. Sometimes what is 
ignored is [considered to be] at too “low” a level, sometimes 
too “high”; it depends on the purposes for which the model is 
being used. So a hospital blueprint would pay attention to the 
structure and connection of its beams, but not to the arrange-
ments of proteins in the wood the beams are made of, nor to 
the efficacy of the resulting operating room.

Models have to ignore things exactly because they view the 
world at a level of abstraction (‘abstraction’ is from the Latin 
abstrahere, ‘to pull or draw away’). And it is good that they do: 
otherwise they would drown in the infinite richness of the 
embedding world. Though this is not the place for metaphys-
ics, it would not be too much to say that every act of concep-

a5

a6
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tualization, analysis, categorization, does a certain amount of 
violence to its subject matter, in order to get at the underlying 
regularities that group things together. If you do not commit 
that act of violence—do not ignore some of what is going on—
you would become so hypersensitive and so overcome with 
complexity that you would be unable to act.

To capture all this in a word, I will say that models are in-
herently partial. All thinking, and all computation, are simi-
larly partial. Furthermore—and this is the important point—
thinking and computation have to be partial: that’s how they 
are able to work.

 4 Full-blooded Action
Something that is not partial, however, is action. When you 
reach out your hand and grasp a plow, it is the real field you 
are digging up, not your model of it. Models, in other words, 
may be abstract, and thinking may be abstract, and some as-
pects of computation may be abstract, but action is not. To 
actually build a hospital, to clench the steering wheel and drive 
through the intersection, or to inject a drug into a person’s 
body, is to act in the full-blooded world, not in a partial or 
distilled model of it.

This difference between action and modeling is extraordi-
narily important. Even if your every thought is  formulated in 
the terms of some model, to act is to take leave of the model 
and participate in the whole, rich, infinitely variegated world. 
For this reason, among others, action plays a crucial role, es-
pecially in the human case, in grounding the more abstract 
processes of modeling or conceptualization. One form that 
grounding can take, which computer systems can already take 
advantage of, is to provide feedback on how well the modeling 
is going. For example, if an industrial robot develops an in-
ternal three-dimensional representation of a wheel assembly 
passing by on a conveyor belt, and then guides its arm towards 

a7
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that object and tries to pick it up, it can use video systems 
or force sensors to see how well the model corresponded to 
what was actually the case. The world does not care about the 
model: the claws will settle on the wheel just in case the actu-
alities mesh.

Feedback is a special case of a very general phenomenon: 
you often learn, when you do act, just how good or bad your 
conceptual model was. You learn, that is, if you have adequate 
sensory apparatus, the capacity to assess the sensed experience, 
the inner resources to revise and reconceptualize, and the lux-
ury of recovering from minor mistakes and failures.

 5 Computers and Models
What does all this have to do with computers, and with cor-
rectness? The point is that computers, like us, participate in 
the real world: they take real actions. One of the most impor-
tant facts about computers, to put this another way, is that 
we plug them in. They are not, as some theoreticians seem 
to suppose, pure mathematical abstractions, living in a pure 
detached heaven. They land real planes at real airports; ad-
minister real drugs; and—as we know only too well—control 
real radars, missiles, and command systems. Like us, in other 
words, although they base their actions on models, they have 
consequence in a world that inevitably transcends the par-
tiality of their enabling models. Like us, in other words, and 
unlike the objects of mathematics, they are challenged by the 
inexorable conflict between partial but tractable models and 
actual but infinite world.

And, to make the only too obvious point: we in general 
have no guarantee that the models are right—indeed we have 
no guarantee about much of anything about the relationship 
between model and world. As we will see, current notions of 

“correctness” do not even address this fundamental question.

 • • • 
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In philosophy and logic, as it happens, there is a very precise 
mathematical theory called “model theory.” You might think 
that it would be a theory about what models are, what they are 
good for, how they correspond to the worlds they are models 
of, and so forth. You might even hope this was true, for the 
following reason: a great deal of theoretical computer science, 
and all of the work in program verification and correctness, 
historically derives from this model-theoretic tradition, and 
depends on its techniques. Unfortunately, however, model 
theory does not address the model-world relationship at all. 
Rather, what model theory does is to tell you how your de-
scriptions, representations, and programs correspond to your 
model.

The situation, in other words, is roughly as depicted in fig-
ure 1. You are to imagine a description, program, computer 
system (or even a thought—they are all similar in this regard) 
in the left hand box, and the very real world in the right. Me-
diating between the two is the inevitable model, serving as an 

World

Nuclear cloud over Hiroshima, 1945

Computer

M
od
el

α β

Figure 1 — Computers, Models, and the Embedding World

Note: picture will be changed
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idealized or pre-conceptualized simulacrum of the world, in 
terms of which the description or program or whatever can 
be understood. One way to understand the model is as the 
glasses through which the program or computer looks at the 
world: it is the world: it is the world, that is, as the system sees 
it (though not, of course, as it necessarily is).

The technical subject of “model theory,” as I have already 
said, is a study of the relationship on the left [labeled α]. What 
about relationship on the right [labeled β]? The answer, and 
one of the main points I hope you will take away from this 
discussion, is that, at this point in intellectual history, we have 
no theory of this right-hand side relationship.

There are lots of reasons for this [lack], some very com-
plex. For one thing, most of our currently accepted formal 
techniques were developed during the first half of this cen-
tury to deal with mathematics and physics. Mathematics is 
unique, with respect to models, because (at least to a first level 
of approximation) its subject matter is the world of models 
and abstract structures, and therefore the model-world rela-
tionship is relatively unproblematic. The situation in physics 
is more complex, of course, as is the relationship between 
mathematics and physics. How apparently pure mathemati-
cal structures can be so successfully used to model the mate-
rial substrate of the universe is a question that has exercised 
physical scientists for centuries. But the point is that, whether 
or not one believes that the best physical models do more jus-
tice and therefore less violence to the world than do models in 
so-called “higher-level” disciplines like sociology or economics, 
formal techniques do not themselves address the question of 
[the model’s] adequacy.

Another reason we do not have a theory of the right-hand 
side is that there is very little agreement on what such a theory 
would look like. In fact all kinds of question arise when one 
studies the model-world relationship explicitly, about whether 
it can be treated formally at all, whether it can be treated rig-

a10
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orously, even if not formally (and what the relationship is be-
tween those two), about whether any theory will be more than 
usually infected with the prejudices and preconceptions of the 
theorist, and so forth. The investigation quickly leads to foun-
dational questions in mathematics, philosophy, and language, 
as well as computer science. But none of what one learns in 
any way lessens its ultimate importance. In the end, any ade-
quate theory of action, and, consequently, any adequate theory 
of correctness, will have to take the model-world relationship 
into account.

 6 Correctness and Relative Consistency
Let’s get back, then, to computers, and to correctness. As I 
mentioned earlier, the word ‘correct’ is already problematic, 
especially as it relates to underlying intention. Is a program 
correct when it does what we have instructed it to do? or what 
we wanted it to do? or what history would dispassionately say 
it should have done? Analyzing what correctness should mean 
is too complex a topic to take up directly. What I want to do, 
in the time remaining, is to describe what sorts of correctness 
we are presently capable of analyzing.

In order to understand this, we need to understand one 
more thing about building computer systems. I have already 
said that, when you design a computer system, you first de-
velop a model of the world, as indicated in Figure 1. But you 
don’t, in general, ever get to hold the model in your hand: com-
puter systems, in general, are based on models that are purely 
abstract. Rather, if you are interested in proving your program 

“correct,” you develop two concrete things, structured in terms 
of the abstract underlying model (although these are listed 
here in logical order, the program is very often written first):

1. A specification: a formal description in some standard 
formal language, specified in terms of the model, in 
which the desired behavior is described; and

a12
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2. The program: a set of instructions and representations, 
also formulated in the terms of the model, which the 
computer uses as the basis for its actions.

How do these two differ? In various ways, of which one is par-
ticularly important. The program has to say how the behavior 
is to be achieved, typically in a step-by-step fashion (and of-
ten in excruciating detail). The specification, however, is less 
constrained: all it has to do is to specify what proper behav-
ior would be, independent of how it is accomplished. For ex-
ample, a specification for a milk delivery system might simply 
be: “Make one milk delivery at each store, driving the short-
est possible distance in total.” That’s just a description of what 
has to happen. The program, on the other hand, would have 
the much more difficult job of saying how this was to be ac-
complished. It might be phrased as follows: “Drive four blocks 
north, turn right, stop at Gregory’s Grocery Store on the cor-
ner, drop off the milk, then drive 17 blocks north-east…” Spec-
ifications, to use some of the jargon of the field, are essentially 
declarative; they are like indicative sentences or claims. Pro-
grams, on the other hand, are procedural: they must contain 
instructions that lead to a determinate sequence of actions.

What, then, is a proof of correctness? It is a proof that any 
system that obeys the program will satisfy the specification.

There are, as is probably quite evident, two kinds of prob-
lems here. The first, often acknowledged, is that the correct-
ness proof is in reality only a proof that two characterizations 
of something are compatible. When the two differ—i.e., when 
you try to prove correctness and fail—there is no more reason 
to believe that the first (the specification) is any more correct 
than the second (the program). As a matter of technical prac-
tice, specifications tend to be extraordinarily complex formal 
descriptions, just as subject to bugs and design errors and so 
forth as programs. In fact they are very much like programs, as 
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this introduction should suggest. So what almost always hap-
pens, when you write a specification and a program, and try to 
show that they are compatible, is that you have to adjust both 
of them in order to get them to converge.

For example, suppose you write a program to factor a 
number c, producing two answers a and b. Your specification 
might be:

Given number c, produce numbers a and b such that a⨯b=c

This is a specification, not a program, because it does not tell 
you how to come up with a and b; all it say is what proper-
ties a and b should have. In particular, suppose I say: “ok, c 
is 5,332,114; what are a and b? Staring at the specification just 
given will not help you to come up with the answer. Suppose, 
on the other hand, given this specification, that you then write 
a program—say, by successively trying pairs of numbers un-
til you find two that work. Suppose further that you then set 
out to prove that your program meets your specification. And, 
finally, suppose that this proof can be constructed (I will not 
go into details here; I trust you can imagine that such a proof 
could be constructed). With all three things in hand—pro-
gram, specification, and proof—you might think you were 
done.

In fact, however, things are rarely that simple, as even this 
simple example can show. In particular, suppose, after doing 
all this work, that you try your program out on some simple 
examples, confident that it must work because you have a 
proof of its correctness. You randomly give it 14 as an input, 
expecting 2 and 7. But in fact it gives you the answers a=1 and 
b=14. In fact, you realize upon further examination, it will al-
ways give back a=1 and b=c. It does this, even though you have 
a proof of its being correct, because you did not make your speci-
fication meet your intentions. You wanted both a and b to be 
different from c (and also different from 1), but you forgot to 
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say that. In this case you have to modify both the program and 
the specification. A plausible new version of the latter would 
be:

Given number c, produce numbers a and b such that a≠1 
and b≠1 and a⨯b=c.

And so on and so forth; the point, I take it, is obvious. If the 
next version of the program, given c=14, produces a=-1 and 
b=-14, you would once again have met your new specification, 
but still failed to meet your intention. Writing “good” specifi-
cations—which is to say, writing specifications that capture 
your intention—is hard.

It should be apparent, nonetheless, that developing even 
straightforward proofs of “correctness” is nonetheless very 
useful. It typically forces you to delineate, very explicitly and 
completely, the model on which both program and specifica-
tion are based. A great many of the simple bugs that occur in 
programs, of which the problem of producing 1 and 14 was an 
example, arise from sloppiness and unclarity about the model. 
Such bugs are not identified, per se, by the proof, but they 
are often unearthed in the attempt to prove [the equivalence]. 
And of course there is nothing wrong with this practice; any-
thing that helps to eradicate errors and increase confidence 
is to be applauded. The point, rather, is to show exactly what 
these proofs consist in.

In particular, as the discussion has shown, when you show 
that a program meets its specifications, all you have done is 
to show that two formal descriptions, slightly different in 
character, are compatible. This is why I think it is somewhere 
between misleading and immoral for computer scientists to 
call this “correctness.” What is called a proof of correctness 
is really a proof of the compatibility or consistency between 
two formal objects of an extremely similar sort: program and 
specification. As a community, we computer scientists should 
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call this relative consistency, and drop the word ‘correctness’ 
completely.

What proofs of relative consistency ignore is the second prob-
lem intimated earlier. Nothing in the so-called program veri-
fication process per se deals with the right-hand side relation-
ship: the relationship between the model and the world. But, 
as is clear, it is over inadequacies on the right hand side—inad-
equacies, that is, in the models in terms of which the programs 
and specifications are written—that systems so commonly fail.

The problem with the moonrise, for example, was a prob-
lem of this second sort. The difficulty was not that the pro-
gram failed, in terms of the model. The problem, rather, was 
that the model was overly simplistic; it did not correspond to 
what was the case in the world. Or, to put it more carefully, since 
all models fail to correspond to the world in indefinitely many 
ways, as we have already said, it did not correspond to what 
was the case in a crucial and relevant way. In other words, to 
answer one of our original questions, even if a formal speci-
fication had been written for the 1960 warning system, and a 
proof of correctness generated, there is no reason to believe 
that potential difficulties with the moon would have emerged.

You might think that the designers were sloppy; that they 
would have thought of the moon if they had been more care-
ful. But it turns out to be extremely difficult to develop real-
istic models of any but the most artificial situations, and to 
assess how adequate these models are. To see just how hard it 
can be, think back on the case of General Electric, and imag-
ine writing appliance specifications, this time for a refrigerator. 
To give the example some force, imagine that you are contract-
ing the manufacture of the refrigerator out to an independent 
supplier, and that you want to put a specification into the con-
tract that is sufficiently precise to guarantee that you will be 
happy with anything that the supplier delivers that meets the 
contract.
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Your first version might be quite simple—say, that the req-
uisitioned device should maintain an internal temperature of 
between 3 and 6 degrees Centigrade; not use more than 200 
watts of electricity; cost less than $100 to manufacture; have 
an internal volume of half a cubic meter; and so on and so 
forth. But of course there are hundreds of other properties 
that you implicitly rely on: it should, presumably, be structur-
ally sound: you would not be happy with a deliciously cool 
plastic bag. It should not weigh more than a ton, or emit loud 
noises. And it should not fling projectiles out at high speed 
when the door is opened. In general, it is impossible, when 
writing specifications, to include everything that you want: le-
gal contracts, and other humanly interpretable specifications, 
are always stated within a background of commonsense, to 
cover the myriad unstated and unstatable assumptions as-
sumed to hold in force. (Current computer, alas, have no com-
mon sense, as the cartoonists know so well.)

So it is hard to make sure that everything that meets your 
specification will really be a refrigerator; it is also hard to make 
sure that your requirements do not rule out perfectly good 
refrigerators. Suppose for example a customer plugs a toaster 
in, puts it inside the refrigerator, and complains that the ob-
ject they received does not meet the temperature specification, 
and must therefore not be a refrigerator. Or suppose they try 
to run it upside down. Or complains that it does not work in 
outer space, even though you did not explicitly specify that it 
would only work within the earth’s atmosphere. Or spins it at 
10,000 rpm. Or even just unplugs it. In each case you would 
say that the problem lies not with the refrigerator but with the 
use. But how is use to be specified? The point is that, as well 
as modeling the artifact itself, you have to model the relevant 
part of the world in which it will be embedded. It follows that 
the model of a refrigerator as a device that always maintains 
an internal temperature of between 3 and 6 degrees is too 
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strict to cover all possible situations. One could try to model 
what appropriate use would be, though specifications do not, 
ordinarily, even try to identify all the relevant circumstantial 
factors. As well as there being a background set of constraints 
with respect to which a model is formulated, there is also a 
background set of assumptions on which a specification is al-
lowed at any point to rely.

 7 The Limits of Correctness
It’s time to summarize what we have said so far. The first 
challenge to developing a perfectly “correct” computer sys-
tem stems from the sheer complexity of real-world tasks. We 
mentioned at the outset various factors that contribute to 
this complexity: human interaction, unpredictable factors of 
setting, hardware problems, difficulties in identifying salient 
levels of abstraction, etc. Nor is this complexity of only theo-
retical concern. A December 1984 report of the American 
Defense Science Board Task Force on “Military Applications 
of New-Generation Computing Technologies” identifies the 
following gap between current laboratory demonstrations and 
what will be required for successful military applications—ap-
plications they call “Real World; Life or Death.” In their esti-
mation the military now† needs (and, so far as one can tell, 
expects to produce) an increase in the power of computer 
systems of nine decimal orders of magnitude, accounting for 
both speed and amount of information to be processed. That 
is a 1,000,000,000-fold [one billion-fold] increase over cur-
rent research systems, equivalent to the difference between a 
full century of the entire New York metropolitan area, com-
pared to one day in the life of a hamlet of one hundred people. 
And remember that even current systems are already several 
orders of magnitude more complex that those for which we 
can currently develop proofs of relative consistency.

But sheer complexity has not been our primary subject 
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matter. The second challenge to computational correctness, 
more serious, comes from the problem of formulating or 
specifying an appropriate model. Except in the most highly 
artificial or constrained domains, modeling an embedding 
situation is an approximate, not a complete, endeavour. It has 
the best hopes of even partial success in what Winograd has 
called “systematic domains”: areas where the relevant stock 
of objects, properties, and relationships are most clearly and 
regularly predefined. Thus bacteria, or warehouse invento-
ries, or even flight paths of airplanes coming into airports, are 
relatively systematic domains, at least compared to conflict ne-
gotiations, any situations involving intentional human agen-
cy, learning and instruction, and so forth. The systems that 
land airplanes are hybrids—combinations of computers and 
people—exactly because the unforeseeable happens, because 
what happens is in part the result of human action, requiring 
human interpretation. Although it is impressive how well the 
phone companies can model telephone connections, lines, and 
even develop statistical models of telephone use, at a certain 
level of abstraction, it would nevertheless be impossible to 
model the content of the telephone conversations themselves.

Third, and finally, is the question of what one does about 
these first two facts. It is because of the answer to this last 
question that I have talked, so far, somewhat interchange-
ably about people and computers. With respect to the ulti-
mate limits of models and conceptualization, both people and 
computers are restrained by the same truths. If the world is 
infinitely rich and variegated, then no prior conceptualization 
of it, nor any abstraction, will ever do it full justice. That is 
ok—or at least we might as well say that it is ok, since that is 
the world we have got. What matters is that we never forget 
about that richness—that we not think, with misplaced opti-
mism, that machines might magically have access to a kind of 

“correctness” to which people cannot even aspire.
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It is time, to put this another way, that we change the tra-
ditional terms of the debate. The question is not whether ma-
chines can do things, as if, in the background, lies the implicit 
assumption that the object of comparison is people. Plans to 
build automated systems capable of making a “decision,” in 
a matter of seconds, to annihilate Europe, say, should make 
you uneasy; requiring a person to make the same decision in 
a matter of the same few seconds should make you uneasy 
too, and for very similar reasons. The problem is that there is 
simply no way that reasoning of any sort can do justice to the 
inevitable complexity of the situation, because of what reason-
ing is. Reasoning is based on partial models. Which means it 
cannot be guaranteed to be correct. Which means, to suggest 
just one possible strategy for action, that we might try, in our 
treaty negotiations, to find mechanisms to slow our weapons 
systems down.

It is striking to realize, once the comparison between machines 
and people is raised explicitly, that we do not typically expect 

“correctness” for people in anything like the form that that we 
presume it for computers. In fact quite the opposite, and in a 
revealing way. Imagine, in some by-gone era, sending a soldier 
off to war, and giving him (it would surely have been a “him”) 
final instructions. “Obey your commander; help your fellow-
soldier,” you might say, “and above all do your country honour.” 
What is striking about this is that it is considered not just a 
weakness, but a punishable weakness—a breach of morality—
to obey instructions blindly (in fact, and for relevant reasons, 
you generally can’t follow instructions blindly; they have to be 
interpreted to the situation at hand). You are subject to court 
martial, for example, if you violate fundamental moral prin-
ciples, such as murdering women and children, even if follow-
ing strict orders.

In the human case, in other words, our social and moral 
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systems seem to have built in in an acceptance of the uncer-
tainties and limitations inherent in the model-world relation-
ship [relation β in figure 1]. We know that the assumptions and 
preconceptions built into instructions will sometimes fail, and 
we know that instructions are always incomplete; we exactly 
rely on judgment, responsibility, consciousness, and so forth, 
to carry someone through those situations—all situations, in 
fact—where model and world part company. In fact we never 
talk about people, in terms of their overall personality, be-
ing correct; we talk about people their being reliable, a much 
more substantial term. It is individual actions, fully situated 
in a particular setting, that are correct or incorrect, not people 
in general, or systems. What leads to the highest number of 
correct human actions is a person’s being reliable, experienced, 
capable of good judgment, etc.

There are two possible morals here, for computers. The first 
has to do with the notion of experience. In point of fact, pro-
gram verification is not the only, or even the most common, 
method of obtaining assurance that a computer system will do 
the right thing. In the real world, programs are usually judged 
acceptable, and are typically accepted into use, not because 
we prove them “correct,” but because they have shown them-
selves relatively reliable in their destined situations for some 
substantial period of time. And, as part of this experience, we 
expect them to fail: there always has to be room for failure. 
Certainly no one would ever accept a program without this in 
situ testing: a proof of correctness is at best added insurance, 
not a replacement, for real-life experience. Unfortunately, for 
the ten million lines of code that is supposed to control and 
coordinate the Star Wars Defense System, there will never, 
God willing, be an in situ test.

One answer, of course, if genuine testing is impossible, is 
to run a simulation of the real situation. But simulation, as 
our diagram should make clear, tests only the left-hand side re-
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lationship [α in figure 1]. Simulations are defined in terms of 
models; they do not test the relationship between the model 
and the world. That is exactly why simulations and tests can 
never replace embedding a program in the real world. All the 
war games we hear about, and hypothetical military scenarios, 
and electronic battlefield simulators, and so forth, are all based 
on exactly the kinds of models we have been talking about 
all along. In fact the subject of simulation, worthy of a whole 
analysis on its own, is really just our whole subject welling up 
all over again.

I said earlier that there were two morals to be drawn, for the 
computer, from the fact that we ask people to be reliable, not 
to be correct. The second moral is for those who, when con-
fronted with the fact that genuine or adequate experience can-
not be had, would say “Oh, well, let’s build responsibility and 
morality into computers—if people can have it, there is no 
reason why machines can’t have it too.” Now I will not argue 
that this is inherently impossible, in some metaphysical or ul-
timate philosophical sense, but a few short comments are in 
order. First, from the fact that humans sometimes are respon-
sible, it does not follow that we know what responsibility is: 
from tacit skills no explicit model is necessarily forthcoming. 
We simply do not know what aspects of the human condi-
tion underlie the modest levels of responsibility to which we 
sometimes rise. And second, with respect to the goal of build-
ing computers with even human levels of full reliability and 
responsibility, I can state with surety that the present state of 
artificial intelligence is about as far from this as mosquitoes 
are from flying to the moon.

But there are deeper morals even than these. The point 
is that even if we could make computers reliable, they still 
wouldn’t necessarily always do the correct thing. People are 
not provably “correct,” either; that’s why we hope they are 

a23



546 Indiscrete Affairs · I

responsible, and surely one of the major ethical facts is that 
correctness and responsibility do not coincide. Even if, in 
another 1,000 years, someone were to devise a genuinely re-
sponsible computer system, there is no reason to suppose that 
it would achieve “perfect correctness” either, in the sense of 
never doing anything wrong. This isn’t a failure, in the sense 
of a performance limitation; it stems from the deeper fact that 
models must be abstract, in order to be useful. The lesson to 
be learned from the violence inherent in the model-world re-
lationship, in other words, is that there is an inherent conflict 
between the power of analysis and conceptualization, on the 
one hand, and sensitivity to the infinite richness, on the other.

But perhaps this is an overly abstract way to put it. Perhaps, 
instead, we should just remember that there will always be 
another moonrise.
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   Annotations1

a0.5 ·… «…Write a general intro. A very “public” paper, written on a long 
plane flight from San Francisco to Budapest; more read than every-
thing else I’ve written combined. INcluded here because it exempli-
fies, in concrete, real-world, publicly-accessible way, many of the 
issues with which the technical work is concerned: deferential rela-
tions to the real world external to the computer; issues of registra-
tion and intent, etc. …»

a1 ·3/0/-3:-1 It is significant that the programs of any length for which correctness 
has been proved (including the ones listed here: operating systems 
and compilers) have “internal” subject matters—i.e., they are pro-
grams whose task domains are, reflexively, programs and comput-
ing. Not only is programming a paradigmatic “systematic domain,” 
in the sense discussed at ……,1 but formalising the progamming do-
main is already part of the task of proving any program correct, and 
so dealing with programs about programs is the simplest possible 
case, with the possible exception of pure mathematics.

Needless to say, nuclear war is not an internal subject matter. 
a2 ·7/-1:8/0 Questions about the form of and relations among theories of one 

and the same system at multiple levels of analysis permeate sci-
ence and philosophy of science (e.g., in the case of the mind, about 
what sorts of regularities hold of the human mind/brain at social, 
psychological, neurological, biochemical, chemical, and physical 
levels). One of the most powerful and ubuiquitous techniques in 
all of computing is the ability to “implement” one system on top 
of another, engendering the same set of questions (“What holds 
true at what level?”) for any computer system of greater than trivial 
complexity. Not only do we still have no theory of how to allocate 
responsibility and/or theoretical attention across these levels; we do 
not even have conceptual machinery to help us identify the salient 
levels. «…References to other annotations on this point…»

One particularly challenging point ties into the semantical analy-
ses that permeate the discussion of 3Lisp and reflection in Part b: the 
inclusion of declarative or representation semantics (φ) along with 
procedural or behavioral (ψ). One of the reasons representation is 
challenging is that representation does not “cross implementation 

†References are in the form page/paragraph/line; with ranges (of any type) 
indicated as x:y. For details see the explanation on p.·…
1. See also annotation a…
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levels,” in the sense that if a system representing the traffic patterns 
of itinerant farm workers is implemented in c++, then it may be 
more natural to say that a given c++ variable represents an element 
in the data base rather than representing what the data base element in 
turn represents—e.g., a particular farm worker. «…Refs to annota-
tions where crossing implementation boundaries is discussed…» Or 
for a more philosophically familiar example, imagine a first-order 
logic representation of the English sentence “A fire has started in 
engine room #2.” The natural semantical analysis of the variables 
employed in the logical axiomatisation would be likely to take their 
referential domain to consist of English sentences themselves, rather 
than what those English sentences are about—viz, fires.

Put it this way: issues of ‘use’ and ‘mention’ in computer sys-
tems are stupefyingly complex. Cf. chapter 12 (“The Correspondence 
Continuum”).

a3 ·9/1/1:2 The way this is phrased (“you first formulate a model of the prob-
lem you want it to solve”) suggests that the model formulation must 
be witting and explicit—which is by no means always the case. The 
point is merely that any program must be framed, implicitly or ex-
plicitly, with respect to what I am here calling a “model” of its sub-
ject matter—i.e., with respect to a “take” or “way of conceptualising” 
its task domain. As noted in «…», I would today use the terminology 
of ‘registration’ instead of that of models—which I believe would 
make the analysis more accute, though perhaps less widely acces-
sible. Thus I would tend to write the first sentence along something 
like the following lines: that when you design and build a computer 
system, you do so “in terms of an (implicit or explicit) registration 
of the problem you want to solve.” 

Cf. also the discussion at …, and the immediately following an-
notation (a…); also «…» in Volume ii, on how such registrations 
need not be (what I there call) conceptual.

a4 ·9/-1/1:2 When I say “[t]o build a model is to conceive of the world in a 
certain delimited way” I am effectively defining my use of the term 
‘model.’ That is, the sentence should be read as meaning roughly 
that I employ the phrase “use a model” as shorthard for “conceive 
of the world in a certain delimited way.” Cf. also the last sentence 
of 10/1 (“[e]very expression of language can be viewed as resting im-
plicitly on some model  of the world”), as well as the discussion in 
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«…» of how, were I writing this today, I would use the terminology 
of ‘registration’ instead of that of models. (See also the immediately 
preceding annotation.)        

a5 ·9/-1:10/0 As noted in «…», for the purpose of this public talk I presented radi-
cally simplified views of computing, in order to make the overall 
claims accessible. Moreover, the “analysis” in this paragraph is not 
only simplisitic (e.g., in equating computational representations 
with descriptions), but conveys a far more ringing endorsement of 
the “formal symbol manipulation” construal of computing than I 
believed even at the time.

Times have also changed. It is no longer considered necessary for 
programs to represent the structure of the task domains in which 
they work—especially to represent it explicitly, in a set of language-
like formulae or expressions. A great deal of “situated artificial 
intelligence,”2 the use of network “models” in dynamic-systems 
based software, etc., the development of machine learning based 
on “training” a large set of real-valued nodes and links, etc., which 
has taken place over the twenty-five years since this paper was writ-
ten, can be understood as various kinds of attempt exactly to avoid 
such explicit task domain representation. However: (i) it remains 
overwhelmingly likely that any software system designed and built 
to control a major military system of the sort being discussed would 
still be built on top of an explicit model—if for no other reason than 
that this design strategy allows the model to be updated, if and 
as appropriate, when the systems involved change (e.g., the nature 
and number of missiles, sensors, etc.), without having to build the 
entire code base over again; and (ii) even machine learning net-
works and connectionist systems and the like rely on models in the 
relatively weak sense being employed here3 (some even develop their 
own)—it is just that the representation of the model in the system may 
be less explicit that was taken for granted decades ago.

a6 ·10/-1/-2:-1 Re “this is not the place for metaphysics”: cf. of course o3, aos, and 
the discussion of “the ontological wall” in ch. 1 at ……. 

a7 ·11/1/4 The partiality and partial (dis)connection of thinking computation 
is a major theme of o3; cf. also the forthcoming aos.

a8 ·11/-1/3:4 Though too simplistically formulated, the position underlying this 
claim is one I would likely endorse even if it were more carefully 

2. «Ref mitacs article.»
3. Cf. annotation a4, above.
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framed. Even to act on a model as such, for example, is to act on 
something whose drenched actuality transcends our registration of 
it, I believe—even if the model is an abstract mathematical one.

The real difficulty with the statement is its seeming implication 
that are phenomena that stand in contrast to action—e.g., that 
reasoning, or inference, or bare computation,3.5 may somehow 

“escape” from this property of having consequences beyond those 
captured in the ways they are registered. This suggestion is one with 
which I would profoundly disagree (and would have disagreed, even 
when the paper was written).

a9 ·12/1 The sorts of cognitive resource described in this paragraph are ex-
actly the constituents of reflection that the papers in Part b are an 
attempt to investigate and explain.

a10 ·14/2/4:8 This claim that mathematics is relatively unproblematic, as regards 
modeling, is an example of the sort of simplification mentioned 
in «…» (cf. also annotation «…») that were made for purposes of 
this being a public talk. Modeling in mathematics is in fact a huge-
ly complex topic—even the merits and demerits of such standard 
forms of modeling as are used to identify the integers with sets of 
sets of that cardinality (so that the number two is identified with the 
set of all sets that have two members, etc.) and the use of Cauchy 
sequences and Dedekind cuts to model the real numbers are topics 
that could—and have—occupied entire books.

It might be thought that, even if they are complex, mathemati-
cal models of mathematical entities would escape from the general 
challenges to models being raised in this paper, but I do not believe 
that that is true, either.

a11 ·… Cf. Eugene Wigner’s “The unreasonable effectiveness of mathemat-
ics in the natural sciences,” Communications in Pure and Applied Math-
ematics, Vol. 13, No. 1 (February 1960). New York: John Wiley & Sons, 
Inc.

a12 ·14/-1/1:  This question, about the nature and possibility of a semantical anal-
 ·15:0/4 ysis of models treating the model-world relationship, was a topic of 

intense discussion in the early years at clsi (mid-to-late 1980s), es-
pecially between myself and Jon Barwise. Barwise4 was in principle 

3.5. E.g., the next sentences reference to “more abstract processes of modeling 
or conceptualization.”
4. Jon was commonly referred to as “Barwise,” in part because csli was replete 
with Jon’s and John’s (Barwise, Perry, Etchemendy, Seely Brown, and others).
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interested in studying the model-world relation, and was a strong 
critic of the unbridled use of models in mathematics itself.5 Never-
theless, as a committed mathematician, he was unswervingly drawn 
to use mathematical structures for all semantical analyses, whereas 
in that period I myself was growing increasingly unhappy with the 
practice—especially for analyses of the sort being discussed in this 
paper. Among other reasons, I was troubled by the fact that the 
identity conditions in mathematics are so much sharper and more 
definite than anything I felt to be true in the real worlds I wanted to 
understand (cf. o3).

The issues between Barwise and I went deep, ultimately driving 
an irrevocable wedge in what up until that point had been a strong 
sense of intellectual partnership—though we remained friends to 
the end.

a13 ·16/0/1:2 In describing a program as consisting of “a set of instructions and 
representations,”6 I was embracing an informal mixture of the ingre-
diential and specificational views of programs described in ch. 2.

a14 ·16/1/-5:-3 Needless to say, the sentence “Make one milk delivery at each store” 
is in imperative, not indicative, mood. This is another place7 where, 
in deference to this being a public talk, the argument is simplisti-
cally phrased. More technically, one might say (it often is said) that 
a program must specify an effective procedure for bringing about a 
result, whereas a specification must identify the result that is to be 
produced, but is not subject to the constraint of showing how it can 
be effectively achieved. Just what ‘effective’ means, however, is far 
from clear; the sense is normally conveyed through examples. There 
is no doubt that programmers develop a keen appreciation of what 
is and what is not effective; but formulating a theory of compu-
tational efficacy is tantamount to develoing a theory of computa-
tion tout court—something that, contrary to what is ubiquitously 
assumed in theoretical computer science, I do not believe we yet 
possess. See ch. 1, and aos.

a15 ·17/3/1:3 The sentence is still in imperative mood; cf. annotation a14, above.
a16 ·17/3/3:5 Presumably what you had in mind were some multplicative combi-

nations of 2, 29, 149, and 617.

5. Cf. annotation a10, above; and «…».
6. Emphasis added.
7. Cf. also annotations a… and a…, above.
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a17 ·18/3/7 This sentence was so simply stated that it ended up confusing. What 
is “sloppy and unclear” is that the requirement failed to exclude 
negative answers, but it is not obvious—in fact it is not clear that 
there is a fact of the matter as to—whether that is a problem in the 
model per se, or a problem with the specification stated in terms of 
that model. Either option is available: one could restrict the model 
to the natural numbers (all positive), or leave the model as the inte-
gers (positive and negative) and restate the requirement along the 
following lines:

Given number c, produce positive numbers a and b such that 
a≠1 and b≠1 and a⨯b=c.

The problem is that the requirement, as stated, leaves the model 
implicit. A fully formal proof would (or anyway should) explicitly 
identify the intended model—but it is easy to imagine something 
taken to be a proof in which that decision remained implicit. For 
all the reasons explicated in the text, what it is to be a “proof ” is as 
prone to error, presupposition, and false assumption as any other 
issue. Formality, proof, mathematics, etc., are not watertight no-
tions; at the bottom, there are inevitably sieves.

Cf. also annotation a…, below.
a18 ·19/2/-2:-1 That is: there is no reason to believe that the problem of the pro-

gram’s responding inappropriately to lunar reflections would have 
emerged in the course of developing the proof. They would still have 
emerged, as in fact they did, on the fateful night.

a19 ·20/1/3 Though the term ‘Celsius’ was formally adopted in 1948, long before 
the paper was written, ‘Centigrade’ was still in common use at the 

time—far more then than at present.
a20 ·20/-1:21/0 The discussion in this paragraph shifts in various ways—focusing 

first on constraints for a supplier (which requires ruling out strange 
contraptions), then on what would be required in order for the 
specifications to ensure that the refrigerator works correctly, which 
brings up the fact that customers, as well as suppliers, are norma-
tively bound by (or in) a background set of tacit assumptions about 
appropriate use. The differences could be sorted out, but the over-
all thrust should be clear enough. 

a21 ·21/1/8:13 «Ref»
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a22 ·22/0/7 «Ref; probably either in Bringing Design to Software or in Understanding 
Computers and Cognition : A New Foundation for Design.»

a23 ·25/1/7:9 As is evident from “The Foundations of Computing” (ch. 1) and aos, 
not only do I not believe that machines are barred from shouldering 
responsibility; I am relatively sure that we will, in due course, con-
struct responsible artifacts as a matter of course—or rather, more 
carefully, that we will construct devices, other than through the 
traditional nine-month method, that are capable of taking up an 
intentional poistion within our shared, normatively drenched, soci-
ety in such a way as to come to carry various kinds of repsonsibilty 
for their actions. As indicated in the next paragraph (·25/-1:·26/0), 
however: that would not matter, vis-a-vis correctness. Such systems 
would no more be “correct” than we are—and should no more be 
asked to decide the fate of Europe in six seconds that should any 
member of the species homo sapiens.

a24 ·26/0/3 “1000 years” was rhetorical flourish; I did not then, and do not now, 
think it will take a millennium to develop synthetic devices capable 
of shouldering genuine responsibility.

More seriously, two overlapping reasons suggest that the emer-
gence of genuine responsibility in artefacts (leaving aside, for the 
sorts of reasons explored in ch. 1, the question of whether such sys-
tems will be computers) will be a gradual and incremental process, 
rather than anything remotely like a singular event. First, responsi-
bility is a vastly complex phenomenon—as many-splendored as any 
dimension of the human condition. Not only is it far from binary; 
it would be harrowingly reductive even to describe it is a “matter 
of degree.” By the same token, and in spite of the ubiquity of the 
phrase, there is no sense in which humans can be remotely claimed 
to assume “full responsibility”—whatever such a notion could be 
made out to mean. Against such a background, it is overwhelm-
ingly likely that the responsibilities shouldered by synthetic devices 
will emerge gradually, in a piece-meal, incremental, and not neces-
sarily even particularly explicable fashion. Second, and considerably 
complicating the first point, it is far more likely that the distinction 
between people and “machines” (i.e., synthesized systems) will blur, 
possibly even to oblivion, long before anything like adult levels of 
responsibility are carried by purely synthetic processes or devices. 
We will all be cyborgs long before substantial responsibility weighs 
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on pure alterity. Note, took, that this second issue will wreak havoc 
with human notions of censure, punishment, threat, stakes, etc., 
currently felt to be constitutive of at least the practice, if not the 
character, of responsibility.

a25 ·26/0/7:8 It would have been better if the paper had said “models must ab-
stract, in order to be useful,” rather than that “models must be ab-
stract.”  The point has to do with the inherent violence done to the 
unutterable richness of the ineffable world by any act of conceptu-
alisation or expression; cf. “The Nonconceptual World,” ch. … in 
Volume ii; and o3.
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